scholarly journals Gm-Realization of Controlled-Gain Current Follower Transconductance Amplifier

2013 ◽  
Vol 2013 ◽  
pp. 1-8 ◽  
Author(s):  
Worapong Tangsrirat

This paper describes the conception of the current follower transconductance amplifier (CFTA) with electronically and linearly current tunable. The newly modified element is realized based on the use of transconductance cells (Gms) as core circuits. The advantage of this element is that the current transfer ratios (iz/ipandix/iz) can be tuned electronically and linearly by adjusting external DC bias currents. The circuit is designed and analyzed in 0.35 μm TSMC CMOS technology. Simulation results for the circuit with ±1.25 V supply voltages show that it consumes only 0.43 mw quiescent power with 70 MHz bandwidth. As an application example, a current-mode KHN biquad filter is designed and simulated.

Author(s):  
B.T. Krishna ◽  
◽  
Shaik. mohaseena Salma ◽  

A flux-controlled memristor using complementary metal–oxide–(CMOS) structure is presented in this study. The proposed circuit provides higher power efficiency, less static power dissipation, lesser area, and can also reduce the power supply by using CMOS 90nm technology. The circuit is implemented based on the use of a second-generation current conveyor circuit (CCII) and operational transconductance amplifier (OTA) with few passive elements. The proposed circuit uses a current-mode approach which improves the high frequency performance. The reduction of a power supply is a crucial aspect to decrease the power consumption in VLSI. An offered emulator in this proposed circuit is made to operate incremental and decremental configurations well up to 26.3 MHZ in cadence virtuoso platform gpdk using 90nm CMOS technology. proposed memristor circuit has very little static power dissipation when operating with ±1V supply. Transient analysis, memductance analysis, and dc analysis simulations are verified practically with the Experimental demonstration by using ideal memristor made up of ICs AD844AN and CA3080, using multisim which exhibits theoretical simulation are verified and discussed.


2011 ◽  
Vol 2011 ◽  
pp. 1-7 ◽  
Author(s):  
Neeta Pandey ◽  
Sajal K. Paul

A universal voltage-mode filter (VM) and a current-mode filter (CM) based on recently proposed active building block, namely, differential voltage current conveyor transconductance amplifier (DVCCTA) are proposed. Both the circuits use a single DVCCTA, two capacitors, and a single resistor. The filters enjoy low-sensitivity performance and low component spread and exhibit electronic tunability of filter parameters via bias currents of DVCCTA. SPICE simulation using 0.25 μm TSMC CMOS technology parameters is included to show the workability of the proposed circuits.


2011 ◽  
Vol 2011 ◽  
pp. 1-10 ◽  
Author(s):  
Neeta Pandey ◽  
Sajal K. Paul

A new active building block for analog signal processing, namely, differential difference current conveyor transconductance amplifier (DDCCTA), is presented, and performance is checked through PSPICE simulations which show the usability of the proposed element is up to 201 MHz. The proposed block is implemented using 0.25 μm TSMC CMOS technology. Some of the applications are presented using the proposed DDCCTA, namely, a voltage mode multifunction filter, a current mode universal filter, an oscillator, current and voltage amplifiers, and grounded inductor simulator. The feasibility of DDCCTA and its applications is confirmed via PSPICE simulations.


2013 ◽  
Vol 2013 ◽  
pp. 1-5 ◽  
Author(s):  
Neeta Pandey ◽  
Rajeshwari Pandey

This paper presents a current mode full-wave rectifier based on single modified Z copy current difference transconductance amplifier (MZC-CDTA) and two switches. The circuit is simple and is suitable for IC implementation. The functionality of the circuit is verified with SPICE simulation using 0.35 μm TSMC CMOS technology parameters.


2011 ◽  
Vol 110-116 ◽  
pp. 5044-5047
Author(s):  
Abdul Qadir

This paper presents a current mode biquad filter, which uses multiple output OTAs. The proposed filter design has electronic tunability because of the use of OTAs and is suitable for implementation in CMOS technology because of the use of grounded capacitors.


2021 ◽  
Vol 1 (2) ◽  
pp. 1-7
Author(s):  
Krishna B.T. ◽  
mohaseena Salma Shaik.

A flux-controlled memristor using complementary metal–oxide–(CMOS) structure is presented in this study. The proposed circuit provides higher power efficiency, less static power dissipation, lesser area, and can also reduce the power supply by using CMOS 90nm technology. The circuit is implemented based on the use of a second-generation current conveyor circuit (CCII) and operational transconductance amplifier (OTA) with few passive elements. The proposed circuit uses a current-mode approach which improves the high-frequency performance. The reduction of a power supply is a crucial aspect to decrease the power consumption in VLSI. An offered emulator in this proposed circuit is made to operate incremental and decremental configurations well up to 26.3 MHZ in cadence virtuoso platform gpdk using 90nm CMOS technology. proposed memristor circuit has very little static power dissipation when operating with ±1V supply. Transient analysis, memductance analysis, and dc analysis simulations are verified practically with the Experimental demonstration by using ideal memristor made up of ICs AD844AN and CA3080, using multisim which exhibits theoretical simulation are verified and discussed.


2019 ◽  
Vol 28 (06) ◽  
pp. 1950105 ◽  
Author(s):  
Bhartendu Chaturvedi ◽  
Atul Kumar

A novel multiple-output dual-X current conveyor transconductance amplifier with buffer-based square/triangular wave generator is introduced in the paper. The proposed generator provides square wave in current mode and triangular wave in voltage mode. Outputs as square and triangular waves are available from terminals with appropriate impedance levels thereby making the proposed generator circuit easily cascadable in both current and voltage modes. The oscillation frequency and amplitude of output square wave are electronically and independently controllable. One more interesting feature of the proposed generator circuit is the adjustable duty cycle. The proposed circuit of square/triangular wave generator is verified through the HSPICE simulation results carried using 0.18[Formula: see text][Formula: see text]m CMOS technology. The simulation results show linear variation of duty cycle against external DC current over a range of 6.5–96%. The variation of square wave’s amplitude via bias current is found to be linear from 10[Formula: see text][Formula: see text]A to 80[Formula: see text][Formula: see text]A. Moreover, the proposed generator can operate very well up to 23.8[Formula: see text]MHz with nonlinearity less than 5%. The proposed generator circuit is also experimentally verified.


Author(s):  
Jyoti Sharma ◽  
Shantanu Chakraborty

<p>In the last decade, there has been much effort to reduce the supply voltage of electronic circuits due to the demand for portable and battery-powered equipment. Since a low-voltage operating circuit becomes necessary, the current-mode technique is ideally suited for this purpose more than the voltage-mode one. In this paper, performance of multi output current controlled current differencing transconductance amplifier (MOCCCDTA) is evaluated using 180nm, 90nm and 45nm CMOS technology. It is found that the 45nm CMOS-based<br />MOCCCDTA provides highest frequency i.e. 33GHz. Further a Universal biquad filter has been designed using a single MOCCCDTA as an active element and two capacitors. Filter offers high frequency in GHz. Tunability of all the filter outputs with respect to a bias current has been analyzed. The tunability of the filter circuit for Bluetooth applications is also shown in this work. The performances of MOCCCDTA circuit and Universal biquad filter are illustrated by HSPICE. The simulation results are found to be in agreement with the theoretical predictions.</p>


Author(s):  
Jyoti Sharma ◽  
Shantanu Chakraborty

<p>In the last decade, there has been much effort to reduce the supply voltage of electronic circuits due to the demand for portable and battery-powered equipment. Since a low-voltage operating circuit becomes necessary, the current-mode technique is ideally suited for this purpose more than the voltage-mode one. In this paper, performance of multi output current controlled current differencing transconductance amplifier (MOCCCDTA) is evaluated using 180nm, 90nm and 45nm CMOS technology. It is found that the 45nm CMOS-based<br />MOCCCDTA provides highest frequency i.e. 33GHz. Further a Universal biquad filter has been designed using a single MOCCCDTA as an active element and two capacitors. Filter offers high frequency in GHz. Tunability of all the filter outputs with respect to a bias current has been analyzed. The tunability of the filter circuit for Bluetooth applications is also shown in this work. The performances of MOCCCDTA circuit and Universal biquad filter are illustrated by HSPICE. The simulation results are found to be in agreement with the theoretical predictions.</p>


2009 ◽  
Vol 2009 ◽  
pp. 1-5 ◽  
Author(s):  
Jiun-Wei Horng

This paper describes a current-mode third-order quadrature oscillator based on current differencing transconductance amplifiers (CDTAs). Outputs of two current-mode sinusoids with90°phase difference are available in the quadrature oscillator circuit. The oscillation condition and oscillation frequency are orthogonal controllable. The proposed circuit employs only grounded capacitors and is ideal for integration. Simulation results are included to confirm the theoretical analysis.


Sign in / Sign up

Export Citation Format

Share Document