scholarly journals Nonlinear Dynamics Modeling and Analysis of Torsional Spring-Loaded Antibacklash Gear with Time-Varying Meshing Stiffness and Friction

2013 ◽  
Vol 5 ◽  
pp. 203438 ◽  
Author(s):  
Zheng Yang ◽  
Jianzhong Shang ◽  
Zirong Luo ◽  
Xiaoming Wang ◽  
Naihui Yu
IEEE Access ◽  
2018 ◽  
Vol 6 ◽  
pp. 51206-51216
Author(s):  
Yinglong Chen ◽  
Hui Liu ◽  
Zengmeng Zhang ◽  
Jiaoyi Hou ◽  
Yongjun Gong

ROBOT ◽  
2013 ◽  
Vol 35 (2) ◽  
pp. 227 ◽  
Author(s):  
Xiaogang RUAN ◽  
Xuyang HOU ◽  
Daoxiong GONG

2021 ◽  
Vol 11 (11) ◽  
pp. 5109
Author(s):  
Guozhi Li ◽  
Yihua Cao ◽  
Maosheng Wang

This article describes the results of modeling and analysis of a generic internal cargo system using a discretization method of the vector mechanics. The model can be easily incorporated into a tandem helicopter model and is intended for use of simulation and investigating the problems of flight dynamics, control, etc., both in flight operation loading a cargo and flight operation in the process of airdrops. The model is derived by considering the main descriptions of the cargo, including the linear and rotational dynamics, the kinematics, and the forces and moments acting on the helicopter. A simulation method embedded with a numerical trim algorithm is developed for the complete coupling helicopter/cargo nonlinear dynamics system. The simulation application of the model is illustrated, including the case of flight operation loading a cargo by considering three mass configurations of 3000, 4500, and 6000 kg, and the case of flight operation in the process of airdrops at velocities of 0, 40, 80, 120, and 160 knots. Stabilities of the helicopter in the process of airdrops are also analyzed. The major conclusions drawn are: (i) the tandem helicopter has a good attitude maintaining ability in the whole flight velocity envelope when it conducts a flight operation loading a cargo; (ii) in the process of airdrops, the increase in flight velocity will constantly decrease the helicopter pitching attitude and increases the total airdrop time and decreases the backward moving velocity of the cargo, and helicopter flying at a velocity between 80 and 120 knots might be acceptable; (iii) the stabilities of both the longitudinal and lateral periodic modes are continuing to decrease during the backward movement of the cargo.


2010 ◽  
Vol 97-101 ◽  
pp. 2764-2769
Author(s):  
Si Yu Chen ◽  
Jin Yuan Tang ◽  
C.W. Luo

The effects of tooth modification on the nonlinear dynamic behaviors are studied in this paper. Firstly, the static transmission error under load combined with misalignment error and modification are deduced. These effects can be introduced directly in the meshing stiffness and static transmission error models. Then the effect of two different type of tooth modification combined with misalignment error on the dynamic responses are investigated by using numerical simulation method. The numerical results show that the misalignment error has a significant effect on the static transmission error. The tooth crowning modification is generally preferred for absorbing the misalignment error by comparing with the tip and root relief. The tip and root relief can not resolve the vibration problem induced by misalignment error but the crowning modification can reduce the vibration significantly.


2021 ◽  
pp. 107754632110026
Author(s):  
Zhou Sun ◽  
Siyu Chen ◽  
Xuan Tao ◽  
Zehua Hu

Under high-speed and heavy-load conditions, the influence of temperature on the gear system is extremely important. Basically, the current work on the effect of temperature mostly considers the flash temperature or the overall temperature field to cause expansion at the meshing point and then affects nonlinear factors such as time-varying meshing stiffness, which lead to the deterioration of the dynamic transmission. This work considers the effect of temperature on the material’s elastic modulus and Poisson’s ratio and relates the temperature to the time-varying meshing stiffness. The effects of temperature on the elastic modulus and Poisson’s ratio are expressed as functions and brought into the improved energy method stiffness calculation formula. Then, the dynamic characteristics of the gear system are analyzed. With the bifurcation diagram, phase, Poincaré, and fast Fourier transform plots of the gear system, the influence of temperature on the nonlinear dynamics of the gear system is discussed. The numerical analysis results show that as the temperature increases, the dynamic response of the system in the middle-speed region gradually changes from periodic motion to chaos.


Sign in / Sign up

Export Citation Format

Share Document