scholarly journals Assessment of Pollen Viability, Germination, and Tube Growth in Eight Tunisian Caprifig (Ficus carica L.) Cultivars

ISRN Agronomy ◽  
2013 ◽  
Vol 2013 ◽  
pp. 1-4 ◽  
Author(s):  
Badii Gaaliche ◽  
Afifa Majdoub ◽  
Mehdi Trad ◽  
Messaoud Mars

The evaluation of pollen viability and its germination capacity are two essential criteria for pollinator’s characterization. This study was carried out to evaluate pollen quality of eight caprifigs grown in the center-east and north-west of Tunisia. Two colorimetric tests 2,3,5-triphenyl tetrazolium chloride (TTC) and acetocarmine were used to estimate pollen viability. Germination rate and pollen tube growth in a culture medium containing 5% sucrose, 5 ppm boric acid (H3BO3) and 1% agar were registered after 24, 48, and 72 hours (H) of incubation. Results showed that the highest pollen viability rate (84%) was obtained by TTC test in caprifig Assafri, followed by Jrani (80.2%), Djebba 2 (77.8%), and Djebba 1 (73.6%). That of other caprifigs did not exceed 50% for the two tests. In all caprifig types, germination rate and pollen tube growth varied according to the incubation period. The highest percentage of germination (72%) and maximum pollen tube length (960 μm) were recorded after 72 H of incubation in caprifigs Assafri and Jrani, respectively. Among the caprifigs studied, four types (Assafri, Jrani, Djebba 1, and Djebba 2) appeared to be suitable pollinators with respect to the criteria investigated.

HortScience ◽  
2004 ◽  
Vol 39 (4) ◽  
pp. 762A-762
Author(s):  
Wol-Soo Kim* ◽  
Sang-Hyun Lee

In order to investigate the cause of differences of mature pollen in Asian pear (Pyrus phyfolia) that are collected from various sources for the artificial pollination, various factors were measured as below: the composition of nonstructural carbohydrate in bud at 30 days after full bloom, the contents of crude protein in skin, cytosol and membrane, and the affinity for lectin (CON-A: Concanavalin, type III A) of glycoprotein in cytosol of pollen were measured. Contents of sucrose and glucose in buds influenced pollen germination rate and pollen tube growth, respectively. Therefore, soluble types of carbohydrates stored in bud were regarded as influencing on pollen germination rate and pollen tube growth. Pollen, which showed low activity, had low affinity on CON-A, lectin of glycoprotein, because it had fragile membrane, proteins in cells were denatured to pollen surface and certain enzymes concerned in pollen germination lost stability and activity. Pollens that showed high activity contained 92 kDa protein while others not. This was assumed as influencing on control of pollen viability.


2009 ◽  
Vol 148 (1) ◽  
pp. 73-82 ◽  
Author(s):  
M. E. CISNEROS-LÓPEZ ◽  
L. E. MENDOZA-ONOFRE ◽  
H. A. ZAVALETA-MANCERA ◽  
V. A. GONZÁLEZ-HERNÁNDEZ ◽  
G. MORA-AGUILERA ◽  
...  

SUMMARYSix pairs of isogenic lines of sorghum (Sorghum bicolor L. Moench) were sown in field plots in Montecillo, State of México (2240 m altitude), in 2005 and 2006. Crosses A (♀)×B (♂) were done in each pair. In A-lines, the length of pistil, stigma, style and ovary, as well as the ovary width, were measured. In B-lines, pollen diameter, viability (cytoplasm density) and production were evaluated. Pollen germination and pollen tube growth in the pistils of the A-lines, were quantified in vivo with aniline blue and epifluorescence 18 h after pollination (HAP), while fertilized pistils were counted at 96 HAP. Histological studies on both pollinated and non-pollinated pistils were performed in one male-sterile line. Seed yield, mean-seed weight, seeds per panicle and seed set (SS; seeds/flower/panicle) were determined at harvest. Pollen viability was the variable most related to pollen germination and pollen tube growth. Stigma receptivity was not associated with its morphology. Growth of the pollen tube in stigma, style and ovary was observed in the transmitting tissue 18 HAP, running parallel to the vascular tissue. Yield under chilling field temperatures (minimum average of 6 and 8°C) prevailing during flower development and pollination ranged from 7 to 12 g/panicle. The differences in seed production and SS among A×B crosses did not depend on the amount and viability of pollen.


Science ◽  
1962 ◽  
Vol 138 (3538) ◽  
pp. 436-437 ◽  
Author(s):  
W. H. Dempsey

2017 ◽  
Vol 54 (5) ◽  
pp. 731-743 ◽  
Author(s):  
C. S. RANASINGHE ◽  
M. D. P. KUMARATHUNGE ◽  
K. G. S. KIRIWANDENIYA

SUMMARYSuccessful fruit set in coconut depends on several reproductive processes including pollen germination and pollen tube growth. High temperature (˃33 °C) during flowering reduces fruit set in coconut. Therefore, identification and development of coconut varieties or hybrids with high reproductive heat tolerance will benefit the coconut industry in view of the climate changes. This experiment was conducted to quantify the response of pollen germination and pollen tube growth of seven coconut hybrids to increasing temperature from 16 to 38 °C. A Principal Component Analysis (PCA) was carried out to classify coconut hybrids on the basis of their temperature tolerances to pollen germination. Pollen germination and pollen tube length of the hybrids ranged from 56 to 78% and 242 to 772 µm, respectively. A modified bilinear model best described the response to temperature of pollen germination and pollen tube length. Cardinal temperatures (Tmin, Topt and Tmax) of pollen germination and pollen tube length varied among the seven hybrids. PCA identified Tmax for pollen germination and Topt for pollen tube length as the most important parameters in describing varietal tolerance to high temperature. PCA also identified SLGD × Sri Lanka Tall and Sri Lanka Brown Dwarf × Sri Lanka Tall as the most tolerant hybrids to high temperature stress and Sri Lanka Tall × Sri Lanka Tall and Sri Lanka Green Dwarf × San Ramon as less tolerant ones based on cardinal temperatures for pollen germination and pollen tube length. Tmax for pollen germination of the most tolerant and less tolerant hybrids were 41.9 and 39.5 °C, respectively. Topt for pollen tube length in the most tolerant and less tolerant hybrids were 29.5 and 26.0 °C, respectively.


2017 ◽  
Vol 44 (4) ◽  
pp. 455 ◽  
Author(s):  
Qing Yang ◽  
ShengNan Wang ◽  
ChuanBao Wu ◽  
QiuLei Zhang ◽  
Yi Zhang ◽  
...  

A dynamic actin cytoskeleton is essential for pollen tube growth and germination. However, the molecular mechanism that determines the organisation of the actin cytoskeleton in pollen remains poorly understood. ADF modulates the structure and dynamics of actin filaments and influences the higher-order organisation of the actin cytoskeleton in eukaryotic cells. Members of the ADF family have been shown to have important functions in pollen tube growth. However, the role of this gene family remains largely unknown in apple (Malus domestica Borkh.). In this study, we identified seven ADFs in the apple genome. Phylogenetic analysis showed that MdADF1 clusters with Arabidopsis thaliana (L.) Heynh. AtADF7, ADF8, ADF10 and AtADF11. We performed sequence alignments and analysed the domain structures of the seven MdADF proteins and identified the chromosome locations of the encoding genes. We cloned the gene encoding MdADF1 from ‘Ralls Janet’ apple and found that it was strongly expressed in pollen. Biochemical assays revealed that MdADF1 directly bound to and severed F-actin under low Ca2+ conditions. We demonstrated that knockdown of MdADF1 inhibited pollen tube growth and reduced the pollen germination rate, but rendered the pollen insensitive to treatment with Latrunculin B, an actin depolymerising agent. Taken together, our results provide insight into the function of MdADF1 and serve as a reference for studies of ADF in other plants.


HortScience ◽  
1992 ◽  
Vol 27 (5) ◽  
pp. 425-427 ◽  
Author(s):  
Gregory A. Lang ◽  
E. James Parrie

Pollen from six southern highbush blueberry cultivars derived from Vaccinium corymbosum L. and one or more other species (V. darrowi Camp, V. ashei Reade, and V. angustifolium Aiton) was incubated on nutrient agar to determine tetrad viability, pollen tube growth rates, and incidence of multiple pollen tube germinations. `Avonblue' pollen had a significantly lower tetrad germination percentage than `Georgiagem', `Flordablue', `Sharpblue', `Gulfcoast', or `O'Neal', all of which had >90% viable tetrads. The in vitro growth rate of `O'Neal' pollen tubes was significantly higher than the growth rates of `Sharpblue' and `Georgiagem pollen tubes. Of those tetrads that were viable, more than two pollen tubes germinated from 83% and 91% of the `Gulfcoast' and `Sharpblue' tetrads, respectively, while only 11% of the `Flordablue' tetrads produced more than two pollen tubes. The total number of pollen tubes germinated per 100 tetrads ranged from 157 (`Flordablue') to 324 (`Sharpblue'), resulting in actual pollen grain viabilities ranging from 39% to 81%. Genetic differences in pollen vigor, as indicated by pollen viability, pollen tube growth rates, and multiple pollen tube germinations, may influence blueberry growers' success in optimizing the beneficial effects of cross-pollination on fruit development.


HortScience ◽  
2020 ◽  
Vol 55 (5) ◽  
pp. 625-631
Author(s):  
Thomas M. Kon ◽  
Melanie A. Schupp ◽  
Hans E. Winzeler ◽  
James R. Schupp

The use of short-duration applications of thermal energy (thermal shock; TS) as an apple blossom thinning strategy was investigated. Effects of TS temperature and timing on stigmatic receptivity, pollen tube growth in vivo, and visible leaf injury were evaluated in multiple experiments on ‘Crimson Gala’. TS treatments were applied to blossoms and spur leaves using a variable temperature heat gun. TS temperatures ≥86 °C had a strong inhibitory effect on pollen tube growth on the stigmatic surface and in the style. TS temperatures >79 °C reduced average pollen tube length to less than the average style length. Timing of TS treatment (0 or 24 hours after pollination) was not an influential factor, indicating that effective TS temperatures reduced pollen tube growth up to 24 hours after the pollination event. The onset of thermal injury to vegetative tissues occurred at similar TS temperatures that inhibited pollen tube growth in vivo. Excessive leaf injury (>33%) was observed at 95 °C, suggesting relatively narrow differences in thermal sensitivity between reproductive and vegetative tissues. Inconsistent TS temperatures and/or responses were observed in some experiments. Ambient air temperature may have influenced heat gun output temperatures and/or plant susceptibility. While results suggest some promise, additional work is required to validate and further develop this concept.


PLoS ONE ◽  
2021 ◽  
Vol 16 (11) ◽  
pp. e0260576
Author(s):  
Massaine Bandeira e Sousa ◽  
Luciano Rogerio Braatz de Andrade ◽  
Everton Hilo de Souza ◽  
Alfredo Augusto Cunha Alves ◽  
Eder Jorge de Oliveira

Cassava breeding is hampered by high flower abortion rates that prevent efficient recombination among promising clones. To better understand the factors causing flower abortion and propose strategies to overcome them, we 1) analyzed the reproductive barriers to intraspecific crossing, 2) evaluated pollen-pistil interactions to maximize hand pollination efficiency, and 3) identified the population structure of elite parental clones. From 2016 to 2018, the abortion and fertilization rates of 5,748 hand crossings involving 91 parents and 157 progenies were estimated. We used 16,300 single nucleotide polymorphism markers to study the parents’ population structure via discriminant analysis of principal components, and three clusters were identified. To test for male and female effects, we used a mixed model in which the environment (month and year) was fixed, while female and male (nested to female) were random effects. Regardless of the population structure, significant parental effects were identified for abortion and fertilization rates, suggesting the existence of reproductive barriers among certain cassava clones. Matching ability between cassava parents was significant for pollen grains that adhered to the stigma surface, germinated pollen grains, and the number of fertilized ovules. Non-additive genetic effects were important to the inheritance of these traits. Pollen viability and pollen-pistil interactions in cross- and self-pollination were also investigated to characterize pollen-stigma compatibility. Various events related to pollen tube growth dynamics indicated fertilization abnormalities. These abnormalities included the reticulated deposition of callose in the pollen tube, pollen tube growth cessation in a specific region of the stylet, and low pollen grain germination rate. Generally, pollen viability and stigma receptivity varied depending on the clone and flowering stage and were lost during flowering. This study provides novel insights into cassava reproduction that can assist in practical crossing and maximize the recombination of contrasting clones.


2020 ◽  
Vol 49 (2) ◽  
pp. 297-304
Author(s):  
Huan Xiong ◽  
Deyi Yuan ◽  
Zhi-Yu Deng ◽  
Genhua Niu ◽  
Feng Zou

Chinese chinquapin [Castanea henryi (Skan) Rehder & E.H. Wilson] is used as a food and timber crop in southern China. Most chinquapin cultivars are self-incompatible and bloom at different times; consequently, artificial pollination is used to ensure fruit set and nut yield. Effective pollen storage that enables producers and breeders to use stored pollen for cross-pollination at a later date is important. In this study, the cultivar Changmangzi was used to estimate the viability and pollen tube length of pollen stored at room temperature, and at 4, −20, and −80°C using in vitro germination tests. It was observed that pollen grain germination significantly decreased at all four storage temperatures. Pollen viability was 14.4% after only 24 days of storage at room temperature. The germination rate was 13.3% after 90 days of storage at 4°C, and 14.5% after 180 days at −20°C. The initial germination rate of pollen stored at −80°C was 56.3% at the beginning of the test and decreased to 15.4% after 240 days. Pollen-tube length decreased with increased storage duration; mean pollen-tube lengths ranged from 109.44 to 257.51 μm. Based on these results, it is suggested that a storage temperature of −80°C for Changmangzi pollen is good.


Sign in / Sign up

Export Citation Format

Share Document