scholarly journals Force-Sensor-Based Estimation of Needle Tip Deflection in Brachytherapy

2013 ◽  
Vol 2013 ◽  
pp. 1-10 ◽  
Author(s):  
Thomas Lehmann ◽  
Mahdi Tavakoli ◽  
Nawaid Usmani ◽  
Ronald Sloboda

A virtual sensor is developed for the online estimation of needle tip deflection during permanent interstitial brachytherapy needle insertion. Permanent interstitial brachytherapy is an effective, minimally invasive, and patient friendly cancer treatment procedure. The deflection of the needles used in the procedure, however, undermines the treatment efficiency and, therefore, needs to be minimized. Any feedback control technique to minimize the needle deflection will require feedback of this quantity, which is not easy to provide. The proposed virtual sensor for needle deflection incorporates a force/torque sensor, mounted at the base of the needle that always remains outside the patient. The measured forces/torques are used by a mathematical model, developed based on mechanical needle properties. The resulting estimation of tip deflection in real time during needle insertion is the main contribution of this paper. The proposed approach solely relies on the measured forces and torques without a need for any other invasive/noninvasive sensing devices. A few mechanical models have been introduced previously regarding the way the forces are composed along the needle during insertion; we will compare our model to those approaches in terms of accuracy. In order to conduct experiments to verify the deflection model, a custom-built, 2-DOF robotic system for needle insertion is developed and discussed. This system is a prototype of an intelligent, hand-held surgical assistant tool that incorporates the virtual sensor proposed in this paper.

2006 ◽  
Vol 18 (2) ◽  
pp. 167-176 ◽  
Author(s):  
Yo Kobayashi ◽  
◽  
Jun Okamoto ◽  
Masakatsu G. Fujie ◽  

Medical procedures such as RFA and cryosurgery require needle insertion, which is difficult because it can easily result in organs being deformed and displaced. In addition, Because deflection occurs more easily with thin needles, needle deflection must be considered. We developed an intelligent robot for needle insertion, incorporating visual feedback, force control, and organ-model-based control. Two experiments were evaluating hepatic properties for organ-model-based robot control. And a dynamic viscoelastic test was done to show dynamic hepatic properties as a differential equation. Their nonlinearity was supported by a creep test. And, this paper shows the deflection correction with (a) the force sensor only, (b) liver model only, (c) both force sensor and liver model is done to control the position of the needle tip. The experimental result shows that using (c) gives optimal effectiveness among the proposed approaches.


Author(s):  
Shan Jiang ◽  
Xingji Wang

A mechanics-based model of flexible needle insertion into soft tissue is presented in this paper. Different from the existing kinematic model, a new model has been established based on the quasi-static principle, which also incorporates the dynamics of needle motions. In order to increase the accuracy of the model, nonlinear characteristics of the flexible needle and the soft tissue are both taken into account. The nonlinear Winkler foundation model and the modified Euler–Bernoulli theory are applied in this study, providing a theoretical framework to study insertion and deformation of needles. Galerkin method and iteration cycle analysis are applied in solving a series of deformation control equations to obtain the needle deflection. The parameters used in the mechanics-based model are obtained from the needle force and needle insertion experiment. Sensitivity studies show that the model can respond reasonably to changes in response to variations in different parameters. A 50 mm needle insertion simulation and a 50 mm corresponding needle insertion experiment are conducted to prove the validity of the model. At last, a study on different needle tip bevel demonstrates that the mechanics-based model can precisely predict the needle deflection when more than one parameter is changed. The solution can also be used in optimizing trajectory of the needle tip, enabling the needle to reach the target without touching important physiological structures such as blood vessels with the help of dynamic trajectory planning.


2019 ◽  
Vol 04 (01) ◽  
pp. 1842005
Author(s):  
Ryosuke Tsumura ◽  
Yusuke Takishita ◽  
Hiroyasu Iwata

Because fine needles can easily be deflected, accurate needle insertion is often difficult. Lower abdominal insertion is particularly difficult because of less imaging feedback; thus, an approach for allowing a straight insertion path by minimizing deflection is beneficial in cases of lower abdominal insertion. Although insertion with axial rotation can minimize deflection, the rotational insertion may cause tissue damage. Therefore, we established a novel insertion method for minimizing both deflection and tissue damage by combining rotation and vibration. Using layered tissues, we evaluated the effect of a combination of rotation and vibration in terms of deflection and tissue damage, which were measured by the insertion force and torque, and the area of the hole created by the needle using histological tissue sections to measure tissue damage. The experimental results demonstrated that insertion with unidirectional rotation is risky in terms of tissue wind-up, while insertion with bidirectional rotation can decrease deflection and avoid wind-up. We also found that insertion with vibration can decrease the insertion force and torque. Therefore, insertion with a combination of bidirectional rotation and vibration can minimize needle deflection and tissue damage, including the insertion force and torque and the hole area.


2021 ◽  
Author(s):  
Iosif Birlescu ◽  
Florin Graur ◽  
Calin Vaida ◽  
Corina Radu ◽  
Paul Tucan ◽  
...  

2014 ◽  
Vol 14 (05) ◽  
pp. 1450076 ◽  
Author(s):  
SHAN JIANG ◽  
XINGJI WANG ◽  
ZHILIANG SU

Flexible needle insertion is performed in many clinical and brachytherapy procedures. Needle bending which results from needle–tissue interaction and needle flexibility plays a pivotal role in implantation accuracy. In this paper, a needle insertion force model and a mechanics-based needle deflection model are applied in simulating the real needle insertion process. Using tissue-equivalent materials, the needle force model is acquired from needle insertion experiments. Based on the principle of minimum potential energy, a mechanics-based model is developed to calculate needle deflection. The needle deflection model incorporates needle insertion forces model, needle–tissue interaction model, needle geometric, and tissue properties. The bending–stretching coupling and geometric non-linearity of the flexible needle are both taken into consideration in the needle deflection model. A modified p–y curves method is first introduced in depicting the lateral needle–tissue interaction. The comparison between experimental and simulation results of needle deflection shows that our mechanics-based model can simulate the deflection of the flexible needle with reasonable accuracy. Parametric studies on different geometry properties of needles show that our mechanics-based model can precisely predict the needle deflection when more than one parameter is changed. In addition, as the needle deflection results are obtained numerically by Rayleigh–Ritz approach, further study on the form of deflection formulation leads to the conclusion that choosing a higher order polynomial can improve the overall simulation accuracy.


2016 ◽  
Vol 01 (01) ◽  
pp. 1640007 ◽  
Author(s):  
Mohsen Khadem ◽  
Carlos Rossa ◽  
Ron S. Sloboda ◽  
Nawaid Usmani ◽  
Mahdi Tavakoli

In needle-based medical procedures, beveled tip flexible needles are steered inside soft tissue to reach the desired target locations. In this paper, we have developed an autonomous image-guided needle steering system that enhances targeting accuracy in needle insertion while minimizing tissue trauma. The system has three main components. First is a novel mechanics-based needle steering model that predicts needle deflection and accepts needle tip rotation as an input for needle steering. The second is a needle tip tracking system that determines needle deflection from the ultrasound images. The needle steering model employs the estimated needle deflection at the present time to predict needle tip trajectory in the future steps. The third component is a nonlinear model predictive controller (NMPC) that steers the needle inside the tissue by rotating the needle beveled tip. The MPC controller calculates control decisions based on iterative optimization of the predictions of the needle steering model. To validate the proposed ultrasound-guided needle steering system, needle insertion experiments in biological tissue phantoms are performed in two cases–with and without obstacle. The results demonstrate that our needle steering strategy guides the needle to the desired targets with the maximum error of 2.85[Formula: see text]mm.


Author(s):  
Dian-Ru Li ◽  
Jih-Kai Yeh ◽  
Wei-Chen Lin ◽  
Jeffrey S. Montgomery ◽  
Albert Shih

This study develops an experimental method to measure the needle deflection and prostate movement using an anatomically accurate prostate simulator with the electromagnetic tracking (EMT) system. Accurate needle insertion is crucial for prostate biopsy to acquire the tissue samples from cancer sites identified by magnetic resonance imaging. False negatives or inability to diagnose are the clinical challenges in the biopsy procedure. The main cause is that the needle tip missed the targeted cancer sites due to needle deflection and prostate movement. An anatomically accurate prostate simulator was developed to quantitatively and experimentally measure the deviation of needle tip from the ideal path and the movement of a target point in the prostate. The EMT system was utilized to simultaneously track the needle tip and target point positions in 3D space. Results show that the maximal needle deflection occurred at the first 60-mm insertion with 6.7 and 0.7 mm in and perpendicular to the needle insertion plane, respectively. The corresponding target point movements were 6.5 mm and 2.4 mm in and perpendicular to the needle insertion plane, respectively. Differences between multiple insertions through the same path have also been quantified. This method can be utilized to study clinical prostate biopsy techniques, evaluate the accuracy of needle devices, and train clinicians for accurate prostate needle biopsy.


2018 ◽  
Vol 46 (10) ◽  
pp. 1582-1594 ◽  
Author(s):  
Marek Wartenberg ◽  
Joseph Schornak ◽  
Katie Gandomi ◽  
Paulo Carvalho ◽  
Chris Nycz ◽  
...  

PLoS ONE ◽  
2021 ◽  
Vol 16 (8) ◽  
pp. e0256344
Author(s):  
Ikjong Park ◽  
Han Sang Park ◽  
Hong Kyun Kim ◽  
Wan Kyun Chung ◽  
Keehoon Kim

Purpose To measure needle insertion force and change in intraocular pressure (IOP) in real-time during intravitreal injection (IVI). The effects of needle size, insertion speed, and injection rate to IOP change were investigated. Methods Needle insertion and fluid injection were performed on 90 porcine eyeballs using an automatic IVI device. The IVI conditions were divided according to needle sizes of 27-gauge (G), 30G, and 33G; insertion speeds of 1, 2, and 5 mm/s; and injection rates of 0.01, 0.02, and 0.05 mL/s. Insertion force and IOP were measured in real-time using a force sensor and a pressure transducer. Results The peak IOP was observed when the needle penetrated the sclera; the average IOP elevation was 96.3, 67.1, and 59.4 mmHg for 27G, 30G, and 33G needles, respectively. An increase in insertion speed caused IOP elevation at the moment of penetration, but this effect was reduced as needle size decreased: 109.8–85.9 mmHg in 27G for 5–1 mm/s (p = 0.0149) and 61.8–60.7 mmHg in 33G for 5–1 mm/s (p = 0.8979). Injection speed was also related to IOP elevation during the stage of drug injection: 16.65 and 11.78 mmHg for injection rates of 0.05 and 0.01 mL/s (p < 0.001). Conclusion The presented data offers an understanding of IOP changes during each step of IVI. Slow needle insertion can reduce IOP elevation when using a 27G needle. Further, the injection rate must be kept low to avoid IOP elevations during the injection stage.


Sign in / Sign up

Export Citation Format

Share Document