scholarly journals Finite-Time Combination-Combination Synchronization for Hyperchaotic Systems

2013 ◽  
Vol 2013 ◽  
pp. 1-7 ◽  
Author(s):  
Huini Lin ◽  
Jianping Cai ◽  
Jincheng Wang

A new type of finite-time synchronization with two drive systems and two response systems is presented. Based on the finite-time stability theory, step-by-step control and nonlinear control method, a suitable controller is designed to achieve finite-time combination-combination synchronization among four hyperchaotic systems. Numerical simulations are shown to verify the feasibility and effectiveness of the proposed control technique.

Author(s):  
Yongjian Liu ◽  
Lijie Li ◽  
Yu Feng

The finite-time synchronization for the high-dimensional chaotic system is studied. A method is derived from the finite-time stability theory and adaptive control technique. To show the wider applicability of our method, an illustration is given using four-dimensional (4D) hyperchaotic systems. Numerical simulations are also used to verify the effectiveness of the technique. Then, the synchronization is applied to secure communication through chaos masking. Simulation results show that the two high-dimensional chaotic systems can realize monotonous synchronization, and the information signal, which is masked, can be recovered undistortedly.


2017 ◽  
Vol 24 (17) ◽  
pp. 3842-3854 ◽  
Author(s):  
Xiaojian Xi ◽  
Saleh Mobayen ◽  
Haipeng Ren ◽  
Sajad Jafari

This paper proposes an adaptive robust finite-time control method based on a global sliding surface for the synchronization of a class of chaotic systems. New chattering-free control laws are designed to guarantee the removal of the reaching mode and realize the existence of the sliding mode around the designed surface right from the first moment. The proposed adaptive-tuning controllers eliminate the requirement of knowledge about disturbance bounds. Using the suggested control technique, superior master–slave synchronization is achieved, the chattering problem is fully solved, and the amplitudes of the control signals are noticeably decreased. Demonstrative simulation results for a Lü chaotic system are presented to indicate the efficiency and usefulness of the proposed scheme. In the end, using a state-feedback controller, we obtain a four-dimensional system with two interesting features. First, some hyperchaotic solutions are proposed, and then a continuous bifurcation diagram showing chaos for a wide range of bifurcation parameter is presented.


2013 ◽  
Vol 397-400 ◽  
pp. 1345-1350
Author(s):  
Feng Liu

Finite-time chaos control of Lorenz chaotic system applying the passive control method is investigated in this paper. Based on the finite-time stability theory and the passive control technique, the passive controller are proposed to realize finite-time chaos control of Lorenz chaotic system. The controller is robust to noise. Both theoretical and numerical simulations show the effectiveness of the proposed method.


2013 ◽  
Vol 385-386 ◽  
pp. 945-950 ◽  
Author(s):  
Yi Feng Wei

Finite-time chaos synchronization of Lorenz chaotic system applying the passive control method is investigated in this paper. Based on the finite-time stability theory and the passive control technique, the passive controller are proposed to realize finite-time chaos synchronization of Lorenz chaotic system. The controller is simple and robust to noise. Both theoretical and numerical simulations show the effectiveness of the proposed method.


2014 ◽  
Vol 2014 ◽  
pp. 1-7 ◽  
Author(s):  
Ma Yongguang ◽  
Dong Zijian

This paper presents a finite-time adaptive synchronization strategy for a class of new hyperchaotic systems with unknown slave system’s parameters. Based on the finite-time stability theory, an adaptive control law is derived to make the states of the new hyperchaotic systems synchronized in finite-time. Numerical simulations are presented to show the effectiveness of the proposed finite time synchronization scheme.


2018 ◽  
Vol 28 (4) ◽  
pp. 613-624
Author(s):  
Qiaoping Li ◽  
Sanyang Liu ◽  
Yonggang Chen

Abstract In this paper, for multiple different chaotic systems with fully unknown parameters, a novel synchronization scheme called ‘modified function projective multi-lag generalized compound synchronization’ is put forward. As an advantage of the new method, not only the addition and subtraction, but also the multiplication of multiple chaotic systems are taken into consideration. This makes the signal hidden channels more abundant and the signal hidden methods more flexible. By virtue of finite-time stability theory and an adaptive control technique, a finite-time adaptive control scheme is established to realize the finite-time synchronization and to properly evaluate the unknown parameters. A detailed theoretical derivation and a specific numerical simulation demonstrate the feasibility and validity of the advanced scheme.


2021 ◽  
pp. 1-14
Author(s):  
Zhenjie Wang ◽  
Wenxia Cui ◽  
Wenbin Jin

This paper mainly considers the finite-time synchronization problem of fuzzy inertial cellular neural networks (FICNNs) with time-varying delays. By constructing the suitable Lyapunov functional, and using integral inequality techniques, several sufficient criteria have been proposed to ensure the finite-time synchronization for the addressed (FICNNs). Without applying the known finite-time stability theorem, which is widely used to solve the finite-time synchronization problems for (FICNNs). In this paper, the proposed method is relatively convenient to solve finite-time synchronization problem of the addressed system, this paper extends the research works on the finite-time synchronization of (FICNNs). Finally, numerical simulations illustrated verify the effectiveness of the proposed results.


2021 ◽  
pp. 2150168
Author(s):  
Xin Huang ◽  
Youmei Zhou ◽  
Muyun Fang ◽  
Jianping Zhou ◽  
Sabri Arik

This paper investigates the problem of finite-time [Formula: see text] synchronization for semi-Markov jump Lur’e systems with time-varying delay and external disturbance. The purpose of this work is to design a mode-dependent state-feedback controller to ensure that the synchronization-error system achieves finite-time synchronization with a prescribed [Formula: see text] performance index. A criterion for the finite-time synchronization is proposed by using appropriate Lyapunov functional and two recently developed inequalities. Then, a design method for the required state-feedback controller is presented with the application of several decoupling techniques. Finally, an example is provided to illustrate the applicability of the proposed control method.


Complexity ◽  
2019 ◽  
Vol 2019 ◽  
pp. 1-9 ◽  
Author(s):  
Cui Yan ◽  
He Hongjun ◽  
Lu Chenhui ◽  
Sun Guan

Fractional order systems have a wider range of applications. Hidden attractors are a peculiar phenomenon in nonlinear systems. In this paper, we construct a fractional-order chaotic system with hidden attractors based on the Sprott C system. According to the Adomain decomposition method, we numerically simulate from several algorithms and study the dynamic characteristics of the system through bifurcation diagram, phase diagram, spectral entropy, and C0 complexity. The results of spectral entropy and C0 complexity simulations show that the system is highly complex. In order to apply such research results to engineering practice, for such fractional-order chaotic systems with hidden attractors, we design a controller to synchronize according to the finite-time stability theory. The simulation results show that the synchronization time is short and the robustness is stable. This paper lays the foundation for the study of fractional order systems with hidden attractors.


Sign in / Sign up

Export Citation Format

Share Document