scholarly journals Microstructure and Mechanical Properties of Recycled Aggregate Concrete in Seawater Environment

2013 ◽  
Vol 2013 ◽  
pp. 1-7 ◽  
Author(s):  
Pengjun Yue ◽  
Zhuoying Tan ◽  
Zhiying Guo

This study aims to conduct research about the microstructure and basic properties of recycled aggregate concrete under seawater corrosion. Concrete specimens were fabricated and tested with different replacement percentages of 0%, 30%, and 60% after immersing in seawater for 4, 8, 12, and 16 months, respectively. The basic properties of recycled aggregate concrete (RAC) including the compressive strength, the elastic modulus, and chloride penetration depth were explicitly investigated. And the microstructure of recycled concrete aggregate (RCA) was revealed to find the seawater corrosion by using scanning electron microscope (SEM). The results showed that higher amount of the RCA means more porosity and less strength, which could lower both the compressive strength and resistance to chloride penetration. This research could be a guide in theoretical and numerical analysis for the design of RAC structures.

2020 ◽  
Vol 991 ◽  
pp. 101-108
Author(s):  
Sallehan Ismail ◽  
Mahyuddin Ramli

This paper presents a study that aimed to assess the chloride penetration depth of recycled aggregate concrete (RAC) modified by using treated coarse recycled concrete aggregate (RCA), adding polyolefin (PO) or polypropylene (PP) fibre and comparing with normal concrete. The coupling effects of the treated RCA and fibres on the chloride penetration of RAC were analysed after two different curing regimes (i.e. normal and seawater) and tested at different curing ages (i.e. 90, 180 and 300 days). Results showed that the inclusion of treated coarse RCA can reduce porosity, thereby decreasing the chloride penetration of RAC. However, the coupling effects of treated coarse RCA and fibre, especially on the use of PO fibre, can enhance the results.


2021 ◽  
Vol 17 (4) ◽  
pp. 306-311
Author(s):  
S.A. Alabi ◽  
C. Arum

The increasing demand, diminishing supplies, and growing pressure on natural resources have necessitated recycling and reusing waste. Several kinds of research have been done on the reuse and recycling of debris from building projects. Thus, with a view to the reuse of waste materials, the elimination of environmental contamination, the reduction of overhead costs of concrete, and the extension of the service life of concrete structures, this research aimed to study the feasibility of utilizing recycled concrete aggregate (RCA) with constant inclusion of waste steel fibre (LWSF) in concrete by evaluating its workability, compressive and splitting tensile strengths. A concrete mix ratio of 1:2:4 by weight of cement, sand, and granite was adopted with a water-cement ratio of 0.45. Five different concrete mixes were prepared in this study; one normal aggregate concrete (NAC) and four (4) other mixes with 25%, 50%, 75%, and 100% recycled aggregate content with a constant 1.5% addition of LWSF. The result of workability shows a reduction with an increase in the percentage replacement level. The recycled aggregate concrete (RAC) was characterized by lower compressive strength as compared with the NAC. When the replacement ratio increased from 25% to 50%, a significant reduction of about 14% and 30% were observed in the compressive strength at 7-days, but at 28-days slight increase in the compressive strength was observed. Also, a decrease in splitting tensile strength as the percentage replacement of crushed granite (CG) with RCA is increased was observed. Overall, the findings showed that the RAC-containing LWSF is environmentally sustainable and would significantly reduce the global greenhouse impact and building materials' overall quality. Keywords: Recycled concrete, lathe waste, steel fibre, compressive strength, tensile strength


2014 ◽  
Vol 665 ◽  
pp. 143-146 ◽  
Author(s):  
Ping Hua Zhu ◽  
Bin Tian

This paper presents a review of the studies on chloride penetration of recycled aggregate concrete in terms of its main factors. These factors include quality and replacement ratio of recycled concrete aggregate, mineral admixtures, water-binder ratio, type and level of load and curing mechanisms. Further, some key issues for future research are put up.


2020 ◽  
Vol 8 (1) ◽  
Author(s):  
Idi Priyono ◽  
Meiske Widyarti, Erizal

An excessive extraction of natural resources for aggregate in concrete mix can caused an environmental degradation.  According to Indonesia ministry of industry in 2017, the use of cement is predicted will reach 84,96 million tons, that can affected the use of aggregate for concrete mix are quadruplet to 250 – 350 million tons. Opimally, the use of recycled material is green method that can reduce an excessive extraction of natural aggregates and keep an environmental sustain. The aim of this study is to obtain recycled aggregate concrete compressive strength and examine recycled aggregate concrete quality in days 3, 7, 28, 35, and 90 along with a proposal of the use of recycled aggregate concrete as a building construction material. This research used experimental method of SNI 03-2834-2002 the standard of normal concrete mix design for f’c 25 MPa then built five types of concrete mix of REC B, REC C, REC D, REC E, and REC F with every types of concrete has four sample are used for compressive strength test. The fine recycled paving block aggregate (RPA) were used partially to substituted a fine recycled brick aggregate (RBA) at 0%, 25%, 50%, 75%, and 100% by weigth. The result of this study showed the mixed concrete REC D with RCA 100%, RPA 50% and RBA 50% in 28 days is generate highest compressive strength than other recycle aggregates concrete mixes. Compressive strength at 28 days in a mix codes REC B, REC C, REC D, REC E and REC F are 18,12 MPa; 18,36 MPa; 19,35 MPa;16,69 MPa; and 16,39 MPa. The results show that it is feasible to replace a natural aggregate entirely by recycled aggregates. With compressive strength over 17 MPa at 28 days, mix codes REC B, REC C and REC D are recommended to use the recycled aggregate concrete for structure of residential buildings but mix codes REC E and REC F aren’t recommended and only allowed for non-structural concrete such as separate wall (SNI 8140:2016). Based on SNI 03-0691-1996 about solid brick concrete (paving block), recycle aggregate concrete with mix code of REC B, REC C, and REC D are able to use on paving block with B quality such as parking lot. While, recycled aggregate concrete with mix code of REC E and REC F are able to use on paving block with C and D quality which used for pedestrian, garden and other use. 


2009 ◽  
Vol 1 (1) ◽  
pp. 1-6 ◽  
Author(s):  
Yong P.C. ◽  
Teo D.C.L

In this rapid industrialised world, recycling construction material plays an important role to preserve the natural resources. In this research, recycled concrete aggregates (RCA) from site-tested concrete specimens were used. These consist of 28-days concrete cubes after compression test obtained from a local construction site. These concrete cubes are crushed to suitable size and reused as recycled coarse aggregate. The amount of recycled concrete aggregate used in this research is approximately 200 kg. Many researchers state that recycled aggregates are only suitable for non-structural concrete application. This research, however, shows that the recycled aggregates that are obtained from site-tested concrete specimen make good quality concrete. The compressive strength of recycled aggregate concrete (RAC) is found to be higher than the compressive strength of normal concrete. Recycled aggregate concrete is in close proximity to normal concrete in terms of split tensile strength, flexural strength and wet density. The slump of recycled aggregate concrete is low and that can be improved by using saturated surface dry (SSD) coarse aggregate.


2009 ◽  
Vol 620-622 ◽  
pp. 255-258 ◽  
Author(s):  
Cheol Woo Park

As the amount of waste concrete has been increased and recycling technique advances, this study investigates the applicability of recycled concrete aggregate for concrete structures. In addition fly ash, the industrial by-product, was considered in the concrete mix. Experimental program performed compressive strength and chloride penetration resistance tests with various replacement levels of fine recycled concrete aggregate and fly ash. In most case, the design strength, 40MPa, was obtained. It was known that the replacement of the fine aggregate with fine RCA may have greater influence on the strength development rather than the addition of fly ash. It is recommended that when complete coarse aggregate is replaced with RCA the fine RCA replacement should be less than 60%. The recycled aggregate concrete can achieve sufficient resistance to the chloride ion penetration and the resistance can be more effectively controlled by adding fly ash. It I finally conclude that the recycled concrete aggregate can be successfully used in the construction field and the recycling rate of waste concrete and flay ash should be increased without causing significant engineering problems.


2012 ◽  
Vol 174-177 ◽  
pp. 1277-1280 ◽  
Author(s):  
Hai Yong Cai ◽  
Min Zhang ◽  
Ling Bo Dang

Compressive strengths of recycled aggregate concrete(RAC) with different recycled aggregates(RA) replacement ratios at 7d, 28d, 60d ages are investigated respectively. Failure process and failure mode of RAC are analyzed, influences on compressive strength with same mix ratio and different RA replacement ratios are analyzed, and the reason is investigated in this paper. The experimental results indicate that compressive strength of recycled concrete at 28d age can reach the standard generally, it is feasible to mix concrete with recycled aggregates, compressive strength with 50% replacement ratio is relatively high.


2013 ◽  
Vol 811 ◽  
pp. 249-253 ◽  
Author(s):  
Wei Li ◽  
Hai Ying Zhang

Experiments on influence of species of aggregate and mixing method on interfacial zone in recycled aggregate concrete were investigated. SEM observations revealed that a recycle normal-strength concrete aggregate consist of loose and porous interfacial structure, whereas a recycled high performance concrete (HPC) aggregate and a triple mixing (TM) consist mainly of dense hydrates. Various admixtures on ITZ was produced that consumed CH in the pore, modified attached cement mortar. Strength of recycled concrete was explained by interaction between cements paste and recycled aggregate. The result verified that the relatively dense pore structure of the recycled concrete benefit to development of mechanical properties.


2011 ◽  
Vol 71-78 ◽  
pp. 4471-4475
Author(s):  
Xiao Xiong Zha ◽  
Kai Zhang

Recycled concrete aggregates have large porosity, large water absorption and high crush index. Mechanical properties of recycled concrete aggregates could be improved by adding activated water instead of ordinary water. On the basis of the experimental studies, this paper analyzes the influences on recycled concrete compression strength when using activated water. There are many different factors such as the kinds and amounts of alkali and the water slag ratio affecting the compressive strength of recycle geopolymer. The results show that activated water has a high enhancement on compressive strength of recycled aggregate concrete, and the highest compressive strength of recycled geopolymer is 57.3MPa.


2017 ◽  
Vol 11 (1) ◽  
pp. 270-280 ◽  
Author(s):  
Haicheng Niu ◽  
Yonggui Wang ◽  
Xianggang Zhang ◽  
Xiaojing Yin

Introduction: Freeze-thaw resistance of recycled aggregate concrete with partial or total replacement of recycled aggregate compared with that of natural aggregate concrete was investigated in this paper. Method: Ninety specimens were fabricated to study the influence of different recycled aggregate replacement ratios on the surface scaling, mass loss, and residual compressive strength after 100 freeze-thaw cycles. Results: The experiment results indicate that the type of recycled aggregate and its replacement ratio have significant effects on the freeze-thaw performance. The cubic compressive strength of recycled aggregate concrete is overall slightly lower than that of normal concrete. After 100 freeze-thaw cycles, the compressive strength decreases and the reduction extent increases with increasing replacement rate of recycled aggregate. The surface scaling of reinforced recycled concrete prisms tends to be more severe with the increase of freeze-thaw cycles. Conclusion: Furthermore, a notable rise in mass loss and the bearing capacity loss is also found as the substitution ratio increases. Under the same replacement rate, recycled fine aggregate causes more negative effects on the freeze-thaw resistance than recycled coarse aggregate.


Sign in / Sign up

Export Citation Format

Share Document