scholarly journals Hypercoordinated Organosilicon(IV) and Organotin(IV) Complexes: Syntheses, Spectral Studies, and Antimicrobial Activity In Vitro

2013 ◽  
Vol 2013 ◽  
pp. 1-8 ◽  
Author(s):  
Kiran Singh ◽  
Parvesh Puri ◽  
Yogender Kumar ◽  
Chetan Sharma

This paper deals with the syntheses and structural features of some new diorganosilicon(IV) and diorganotin(IV) complexes having general formulae (CH3)2MCl(L1), (CH3)2MCl(L2), (CH3)2M(L1)2, and (CH3)2M(L2)2 with new Schiff bases (M = Si and Sn). The Schiff bases HL1 and HL2 have been derived from the condensation of 3-bromobenzaldehyde with 4-amino-3-ethyl-5-mercapto-1,2,4-triazole and 4-amino-5-mercapto-3-propyl-1,2,4-triazole, respectively. The compounds have been characterized by the elemental analyses, molar conductance, and spectral (UV, IR, 1H, 13C, 29Si, and 119Sn NMR) studies. The resulting complexes have been proposed to have trigonal bipyramidal and octahedral geometries. In vitro antimicrobial activities of the compounds have been carried out.

2011 ◽  
Vol 2011 ◽  
pp. 1-10 ◽  
Author(s):  
Kiran Singh ◽  
Parvesh Puri ◽  
Yogender Kumar ◽  
Chetan Sharma ◽  
Kamal Rai Aneja

The Schiff bases HL1-3have been prepared by the reaction of 5-bromothiophene-2-carboxaldehyde with 4-amino-5-mercapto-3-methyl/propyl/isopropyl-s-triazole, respectively. Organosilicon(IV) and organotin(IV) complexes of formulae (CH3)2MCl(L1-3), (CH3)2M(L1-3)2were synthesized from the reaction of (CH3)2MCl2and the Schiff bases in 1 : 1 and 1 : 2 molar ratio, where and Sn. The synthesized Schiff bases and their metal complexes have been characterized with the aid of various physicochemical techniques like elemental analyses, molar conductance, UV, IR,1H,13C,29Si, and119Sn NMR spectroscopy. Based on these studies, the trigonal bipyramidal and octahedral geometries have been proposed for these complexes. The ligands and their metal complexes have been screenedin vitroagainst some bacteria and fungi.


2014 ◽  
Vol 2014 ◽  
pp. 1-12 ◽  
Author(s):  
Har Lal Singh ◽  
Jangbhadur Singh

New series of organotin(IV) complexes and Schiff bases derived from amino acids have been designed and synthesized from condensation of1H-indole-2,3-dione, 5-chloro-1H-indole-2,3-dione, andα-amino acids (phenylalanine, isoleucine, and glycine). All compounds are characterized by elemental analyses, molar conductance measurements, and molecular weight determinations. Bonding of these complexes is discussed in terms of their UV-visible, infrared, and nuclear magnetic resonance (1H,13C, and119Sn NMR) spectral studies. The results suggest that Schiff bases behave as monobasic bidentate ligands and coordinate with dibutyltin(IV) in octahedral geometry according to the general formula [Bu2Sn(L)2]. Elemental analyses and NMR spectral data of the ligands with their dibutyltin(IV) complexes agree with their proposed distorted octahedral structures. Few representative compounds are tested for their in vitro antibacterial activity against Gram-positive (B. cereus,Staphylococcusspp.) and Gram-negative (E. coli,Klebsiellaspp.) bacteria. The results show that the dibutyltin complexes are more reactive with respect to their corresponding Schiff base ligands.


2013 ◽  
Vol 2013 ◽  
pp. 1-9 ◽  
Author(s):  
Har Lal Singh ◽  
Jangbhadur Singh ◽  
A. Mukherjee

The present work stems from our interest in the synthesis, characterization, and antibacterial evaluation of organosilicon(IV) complexes of a class of amino-acid-based Schiff base which have been prepared by the interaction of ethoxytrimethylsilane with the Schiff bases (N OH) in 1 : 1 molar ratio. These complexes have been characterized by elemental analysis, molar conductance, and spectroscopic studies including electronic IR and NMR (1H,13C, and29Si) spectroscopy. The analytical and spectral data suggest trigonal bipyramidal geometry around the silicon atom in the resulting complexes. The ligands and their organosilicon complexes have also been evaluated forin vitroantimicrobial activity against bacteria (Bacillus cereus,Nocardiaspp.,E. aerogenes,Escherichia coli,Klebsiellaspp., andStaphylococcusspp.). The complexes were found to be more potent as compared to the ligands.


2013 ◽  
Vol 2013 ◽  
pp. 1-5 ◽  
Author(s):  
S. Nagashree ◽  
P. Mallu ◽  
L. Mallesha ◽  
S. Bindya

A series of methyl-2-aminopyridine-4-carboxylate derivatives,3a–f,were synthesized in order to determine theirin vitroantimicrobial activity. The chemical structures of the synthesized compounds were confirmed by elemental analyses, FT-IR, and1H NMR spectral studies. Among the synthesized compounds,3cand3dshowed good antimicrobial activity compared to other compounds in the series.


2021 ◽  
Vol 9 (09) ◽  
pp. 900-909
Author(s):  
Anupama Srivastava ◽  
◽  
Shilpi Srivastava ◽  
Om. P. Pandey ◽  
Soumitra K. Sengupta ◽  
...  

Titanium(IV) complexes of type[(η5-C5H5)2TiCl(L)] have been synthesized by the reactions of bis(cyclopentadienyl)titanium(IV)dichloride with Schiff bases (LH) derived by the condensation of 5-(substituted aryl)-2-hydrazino-1,3,4-oxadiazole and indoline-2,3-dione in tetrahydrofuranin the presence oftriethylamine. All these complexes are soluble in PhNO2, DMF and DMSO.The complexes were characterized by elemental analyses, electrical conductance, magnetic susceptibility, UV-Vis, IR, 1H NMR, 13C NMR, XRD and SEM spectral techniques. Low molar conductance values indicate that they are non-electrolytes. The spectral data indicate5-coordinate geometry for the complexes.XRD pattern indicate that the complexes have monoclinic crystal system and particle sizes were found 49.36 nm (nano-size). In vitro antifungal activity of synthesized compounds was evaluated against fungi Aspergillusniger, Aspergillusflavus,ColletotrichumfalcatumandIn vitro antibacterial activity was determined by screening the compounds against gram negative (P. aeruginosa, S.typhi) and gram positive (S. aureus and B.subtilis) bacterial strains using minimum inhibition concentration method (MIC) by serial dilution technique. The titanocene(IV) complexes have higher antimicrobial effect than the parent Schiff bases.


2013 ◽  
Vol 2013 ◽  
pp. 1-5 ◽  
Author(s):  
C. Mallikarjunaswamy ◽  
D. G. Bhadregowda ◽  
L. Mallesha

Pyrimidine salts such as 2-methyl-5-nitro-phenyl-(4-pyridin-3-yl-pyrimidin-2-yl)-amine (1) and 4-methyl-3-(4-pyridin-3-yl-pyrimidin-2-yl-amino)-phenyl-amine (2) with chloranilic and picric acids were synthesized, and theirin vitroantibacterial and antifungal activities were evaluated. The synthesized compounds were characterized by elemental analyses, UV-visible, FT-IR, and1H NMR spectral studies. Compound2aexhibited good inhibition towards antimicrobial activity compared to the other compounds.


2011 ◽  
Vol 8 (3) ◽  
pp. 1258-1263 ◽  
Author(s):  
A. K. Mapari ◽  
M. S. Hate ◽  
K. V. Mangaonkar

The mixed ligand complexes of Co(II), Ni(II), Cu(II) and Zn(II) with Schiff basesN-(2-hydroxy-1-naphthylidene)-4-methylaniline (L1H) andN-(2-hydroxybenzylidene)-2,3-dimethylaniline (L2H) have been synthesized and characterized. The resulting complexes were characterized by elemental analysis, thermogravimetric analysis, magnetic moment measurements, conductivity measurements,1H NMR, IR, UV-visible and ESR spectral studies. The Schiff bases acts as bidentate monobasic ligands, coordinating through deprotonated phenolic oxygen and azomethine nitrogen atoms. The complexes are non-electrolytic in DMSO. The presence of the two coordinated water molecules in these complexes was indicated by IR spectra and thermogravimetric analysis of the complexes. From the analytical and spectral data the stoichiometry of these complexes have been found to be [M(L1)(L2)(H2O)2] {where M = Co(II) , Ni(II), Cu(II) and Zn(II)}. It is found that Co(II), Ni(II), Cu(II) and Zn(II) complexes exhibited octahedral geometry. The antimicrobial activities of ligands and their mixed ligand complexes were screened by disc diffusion method. It is found that the metal complexes have higher antimicrobial activity than the free ligand.


1995 ◽  
Vol 2 (6) ◽  
pp. 297-309 ◽  
Author(s):  
Mala Nath ◽  
Savita Goyal

Twelve new organotin(IV) complexes of the type RnSnLm [where n = 3, m = 1, R = CH3 or C6H5 ; n = 2, m = 2, R = C6H5 or C4H9 ; L = anion of Schiff bases derived from the condensation of 2-amino-5-(o -anisyl)-l,3,4-thiadiazole with salicylaldehyde (HL-1), 2- hydroxynaphthaldehyde (HL-2) and 2-hydroxyacetophenone (HL-3)] have been synthesized and characterized by elemental analysis, molar conductances, electronic, infrared, far-infrared, H1 NMR and S119n Mössbauer spectral studies. Thermal studies of two complexes, viz., Ph3Sn (L-1) and Ph2Sn(L-2)2 have been carried out in the temperature range 25-1000∘C using TG, DTG and DTA techniques. All these complexes decompose gradually with the formation of SnO2 as an end product. In vitro antimicrobial activity of the Schiff bases and their complexes has also been determined against Streptococcus faecalis, Klebsiella pneumoniae, Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus Penicillin resistance (2500 units), Candida albicans, Cryptococcus neoformans, Sporotrichum schenckii, Trichophyton mentagrophytes and Aspergillus fumigatus. The Schiff bases (HL-1), (HL-2) and the organotin(IV) compounds have also been tested against various important herbicidal, fungicidal, insecticidal species and also for parasitological activity against freeliving nematode.


2010 ◽  
Vol 9 (2) ◽  
pp. 285-288 ◽  
Author(s):  
Mehtab Parveen ◽  
Sayed Hasan Mehdi ◽  
Raza Murad Ghalib ◽  
Mahboob Alam ◽  
Rokiah Hashim ◽  
...  

The new 1, 2, 3, selenadiazole derivative (3) was prepared from friedelin (1) via the corresponding semicarbazone (2) using Lalezari cyclization. The compounds were prepared, separated and characterized on the basis of microanalysis and spectral studies. The isolated friedelin and its selenadiazole were screened in vitro for their antimicrobial activities against various pathogenic bacterial were found to be highly active against all the selected pathogens. Compound 3 showed an inhibition zone of 14 mm and 12 mm respectively against highly resistant S. albus and C. albicans. A general mechanistic scheme for these reactions is also suggested based on current and previous results.   Keywords: Friedelin, semicarbazone, ketomethylene, cyclization, selenadiazole


2011 ◽  
Vol 2011 ◽  
pp. 1-8
Author(s):  
S. Sumathi ◽  
C. Anitha ◽  
P. Tharmaraj ◽  
C. D. Sheela

Transition metal complexes of various acetylacetone-based ligands of the type ML (where M=  Cu(II), Ni(II), Co(II); L=  3-(aryl)-pentane-2,4-dione) have been synthesized. The structural features have been derived from their elemental analysis, magnetic susceptibility, molar conductance, IR, UV-Vis, H1NMR, mass and ESR spectral studies. Conductivity measurements reveal that all the complexes are nonelectrolytic in nature. Spectroscopic and other analytical data of the complexes suggest square planar geometry for copper(II), cobalt(II), and nickel(II) complexes of 3-(3-phenylallylidene)pentane-2,4-dione and octahedral geometry for other metal(II) complexes. The redox behaviors of the copper(II) complexes have been studied by cyclic voltammetry. The free ligands and their metal complexes have been screened for their in vitro biological activities against bacteria and fungus. The metal(II) complexes are found to possess increased activities compared to those of the free ligands. All synthesized compounds may serve as potential photoactive materials as indicated from their characteristic fluorescence properties. The second harmonic generation (SHG) efficiency of the ligands was found to have considerable effect compared to that of urea and KDP.


Sign in / Sign up

Export Citation Format

Share Document