scholarly journals Synthesis, Spectroscopic, Molecular Structure, and Antibacterial Studies of Dibutyltin(IV) Schiff Base Complexes Derived from Phenylalanine, Isoleucine, and Glycine

2014 ◽  
Vol 2014 ◽  
pp. 1-12 ◽  
Author(s):  
Har Lal Singh ◽  
Jangbhadur Singh

New series of organotin(IV) complexes and Schiff bases derived from amino acids have been designed and synthesized from condensation of1H-indole-2,3-dione, 5-chloro-1H-indole-2,3-dione, andα-amino acids (phenylalanine, isoleucine, and glycine). All compounds are characterized by elemental analyses, molar conductance measurements, and molecular weight determinations. Bonding of these complexes is discussed in terms of their UV-visible, infrared, and nuclear magnetic resonance (1H,13C, and119Sn NMR) spectral studies. The results suggest that Schiff bases behave as monobasic bidentate ligands and coordinate with dibutyltin(IV) in octahedral geometry according to the general formula [Bu2Sn(L)2]. Elemental analyses and NMR spectral data of the ligands with their dibutyltin(IV) complexes agree with their proposed distorted octahedral structures. Few representative compounds are tested for their in vitro antibacterial activity against Gram-positive (B. cereus,Staphylococcusspp.) and Gram-negative (E. coli,Klebsiellaspp.) bacteria. The results show that the dibutyltin complexes are more reactive with respect to their corresponding Schiff base ligands.

2013 ◽  
Vol 2013 ◽  
pp. 1-8 ◽  
Author(s):  
Kiran Singh ◽  
Parvesh Puri ◽  
Yogender Kumar ◽  
Chetan Sharma

This paper deals with the syntheses and structural features of some new diorganosilicon(IV) and diorganotin(IV) complexes having general formulae (CH3)2MCl(L1), (CH3)2MCl(L2), (CH3)2M(L1)2, and (CH3)2M(L2)2 with new Schiff bases (M = Si and Sn). The Schiff bases HL1 and HL2 have been derived from the condensation of 3-bromobenzaldehyde with 4-amino-3-ethyl-5-mercapto-1,2,4-triazole and 4-amino-5-mercapto-3-propyl-1,2,4-triazole, respectively. The compounds have been characterized by the elemental analyses, molar conductance, and spectral (UV, IR, 1H, 13C, 29Si, and 119Sn NMR) studies. The resulting complexes have been proposed to have trigonal bipyramidal and octahedral geometries. In vitro antimicrobial activities of the compounds have been carried out.


2011 ◽  
Vol 2011 ◽  
pp. 1-10 ◽  
Author(s):  
Kiran Singh ◽  
Parvesh Puri ◽  
Yogender Kumar ◽  
Chetan Sharma ◽  
Kamal Rai Aneja

The Schiff bases HL1-3have been prepared by the reaction of 5-bromothiophene-2-carboxaldehyde with 4-amino-5-mercapto-3-methyl/propyl/isopropyl-s-triazole, respectively. Organosilicon(IV) and organotin(IV) complexes of formulae (CH3)2MCl(L1-3), (CH3)2M(L1-3)2were synthesized from the reaction of (CH3)2MCl2and the Schiff bases in 1 : 1 and 1 : 2 molar ratio, where and Sn. The synthesized Schiff bases and their metal complexes have been characterized with the aid of various physicochemical techniques like elemental analyses, molar conductance, UV, IR,1H,13C,29Si, and119Sn NMR spectroscopy. Based on these studies, the trigonal bipyramidal and octahedral geometries have been proposed for these complexes. The ligands and their metal complexes have been screenedin vitroagainst some bacteria and fungi.


2021 ◽  
Vol 33 (8) ◽  
pp. 1749-1756
Author(s):  
Manish Kumar ◽  
Poonam Jangra Darolia ◽  
Nidhi Antil ◽  
Mahak Dalal ◽  
Jitender Narwal ◽  
...  

Schiff base ligand (3-((4-mercaptophenyl)imino)-1-phenylindolin-2-one) of 1-phenylindoline-2,3-dione and 4-aminothiophenol was synthesized by refluxing. Organotellurium(IV) complexes of type (RTeCl3.NPhIATP and R2TeCl2.NPhIATP, where R = 4-hydroxyphenyl, 4-methoxyphenyl and 3-methyl-4-hydroxyphenyl, NPhIATP = Schiff base ligand). The ligand and its organotellurium(IV) complexes (9a-f) were characterized by FT-IR, molar conductance, elemental analyses, UV-vis, mass, 1H & 13C NMR spectral studies. Geometry of all the compounds were optimized and octahedral geometry have been proposed for all the tellurium(IV) complexes. Molecular docking was studied to find the binding interactions between ligand (NPhIATP) and receptor proteins: E. coli (3t88) and S. aureus (3ty7). The antimicrobial activity of ligand and its tellurium(IV) complexes have been screened against bacteria and fungi. All the organotellurium(IV) complexes complexes showed good activity to ligand towards different studied microorganisms.


2012 ◽  
Vol 9 (3) ◽  
pp. 532-540 ◽  
Author(s):  
Baghdad Science Journal

Two Schiff base ligands L1 and L2 have been obtained by condensation of salicylaldehyde respectively with leucylalanine and glycylglycine then their complexes with Zn(II)were prepared and characterized by elemental analyses , conductivity measurement , IR and UV-Vis .The molar conductance measurement indicated that the Zn(II) complexes are 1:1 non-electrolytes. The IR data demonstrated that the tetradentate binding of the ligands L1 and L2 . The in vitro biological screening effect of the investigated compounds have been tested against the bacterial species Staphlococcus aureus, Escherichia coil , Klebsiella pneumaniae, Proteus vulgaris and Pseudomonas aeruginosa by the disc diffusion method . A comparative study of inhibition values of the Schiff base ligands and their complexes indicated that the complexes exhibit higher antimicrobial activity than the free ligands . Zinc ions are proven to be essential for the growth-inhibitor effect. The extent of inhibition appeared to be strongly dependent on the initial cell density and on the growth medium .


2020 ◽  
Vol 32 (4) ◽  
pp. 896-900
Author(s):  
M. Idrees ◽  
Y.G. Bodkhe ◽  
N.J. Siddiqui ◽  
S.S. Kola

A series of 5-(benzofuran-2-yl)-N-(3-chloro-4-(2-(p-tolyloxy) substituted quinolin-3-yl)-2-oxoazetidin-1-yl)-1-phenyl-1H-pyrazole-3-carboxamide derivatives (4a-f) were synthesized with excellent yields by cyclocondensation reaction of 5-(benzofuran-2-yl)-N′-(2-(p-tolyloxy) substituted quinolin-3-yl)methylene)-1-phenyl-1H-pyrazole-3-carbohydrazide (3a-f) with chloroacetyl chloride in presence of triethylamine in DMF. One pot condensation of 5-(benzofuran-2-yl)-1-phenyl-1H-pyrazole-3-carbohydrazide (1) with 2-(p-tolyloxy) substituted quinoline-3-carbaldehyde (2a-f) in ethanol solvent in presence of catalytic amount of acetic acid gave intermediate compounds (3a-f). The structures of newly synthesized compounds have been substantiated through elemental analysis and spectral studies viz. 1H NMR, 13C NMR, IR and mass spectra. All the synthesized compounds were screened for their in vitro antibacterial activity against pathogenic bacteria such as S. aureus and E. coli at different concentrations.


2013 ◽  
Vol 2013 ◽  
pp. 1-9 ◽  
Author(s):  
Har Lal Singh ◽  
Jangbhadur Singh ◽  
A. Mukherjee

The present work stems from our interest in the synthesis, characterization, and antibacterial evaluation of organosilicon(IV) complexes of a class of amino-acid-based Schiff base which have been prepared by the interaction of ethoxytrimethylsilane with the Schiff bases (N OH) in 1 : 1 molar ratio. These complexes have been characterized by elemental analysis, molar conductance, and spectroscopic studies including electronic IR and NMR (1H,13C, and29Si) spectroscopy. The analytical and spectral data suggest trigonal bipyramidal geometry around the silicon atom in the resulting complexes. The ligands and their organosilicon complexes have also been evaluated forin vitroantimicrobial activity against bacteria (Bacillus cereus,Nocardiaspp.,E. aerogenes,Escherichia coli,Klebsiellaspp., andStaphylococcusspp.). The complexes were found to be more potent as compared to the ligands.


2006 ◽  
Vol 71 (7) ◽  
pp. 733-744 ◽  
Author(s):  
R. Nair ◽  
A. Shah ◽  
S. Baluja ◽  
S. Chanda

Two Schiff bases were synthesized from raceacetophenone: 1) ADS1 4-ethyl-6-{(E)-1-[(3-nitrophenyl)imino]ethyl}benzene-1,3-diol and 2) ADS3 4-ethyl-6-[(E)-1-{(2-nitrophenyl)imino]ethyl}benzene-1,3-diol. Then their metal complexes were formed. The metals selected for the preparation of complexes were copper, nickel, iron and zinc. Hence, in total 8 metal complexes were synthesized and screened for antibacterial activity against some clinically important bacteria, such as Pseudomonas aeruginosa, Proteus vulgaris, Proteus mirabilis, Klebsiella pneumoniae and Staphylococcus aureus. The in vitro antibacterial activity was determined by the Agar Ditch technique using DMF (polar) and 1,4-dioxane (non polar) as solvents. The Schiff bases showed greater activity than theirmetal complexes; themetal complexes showed differential effects on the bacterial strains investigated and the solvent used, suggesting that the antibacterial activity is dependent on the molecular structure of the compound, the solvent used and the bacterial strain under consideration. The Schiff base ADS3 in the polar solvent DMF showed better antibacterial activity towards the investigated bacterial strains. Amongst the four metals, Zn showed the best antibacterial activity followed by Fe in 1,4-dioxane while Ni followed by Zn and Fe showed the best antibacterial activity in DMF. P. vulgaris was the most resistant bacteria.


2020 ◽  
Vol 12 (8) ◽  
pp. 1137-1148 ◽  
Author(s):  
Asma S. Al-Wasidi ◽  
Nawal M. Al-Jafshar ◽  
Amal M. Al-Anazi ◽  
Moamen S. Refat ◽  
Nashwa M. El-Metwaly ◽  
...  

In this article, four new Schiff base complexes of Mn(II), Co(II), Ni(II) and Cu(II) complexes have been synthesized with two different compositions as [M(L)2Cl2] · nH2O and [M(L)2(H2O)2]Cl2 · nH2O [where L1 = benzoin-o-amino benzoic acid (aromatic β amino acid) and L2 = benzoin bromo-o-amino benzoic acid (aromatic β amino acid); M = MnII, CoII, NiII and CuII; n = 1, 2 and 4]. These Schiff base complexes were discussed by many tool of analyses like elemental analysis, magnetic susceptibility, molar conductance, mass spectra, infrared spectra "IR," proton nuclear magnetic resonance "1H-NMR," electronic spectral and thermogravimetric analysis (TG/DTG). These complexes have an electrolytic nature within range of 78–174 Ω1 cm–1 mol –1 based on conductance measurements. Magnetic moment and electronic spectral results deduced that the geometry of Mn2+, Co2+ and Ni2+ and Cu2+ complexes has an octahedral configuration. The number of coordinated and uncoordinated water molecules for the synthesized complexes were calculated based on the thermal analysis technique. The kinetic thermodynamic data were estimated by using commonly integral equations of Horowitz-Metzger (HM) and Coats-Redfern (CR). In vitro the antimicrobial activity of both free L1 and L2 ligands in comparable with their metal complexes were evaluated. This study was strengthen by molecular docking against three protein receptors, which attributing to selected organisms already used in vitro study.


2015 ◽  
Vol 12 (2) ◽  
pp. 350-361 ◽  
Author(s):  
Baghdad Science Journal

A new series of metal ions complexes of VO(II), Cr(III), Mn(II), Zn(II), Cd(II) and Ce(III) have been synthesized from the Schiff bases (4-chlorobenzylidene)-urea amine (L1) and (4-bromobenzylidene)-urea amine (L2). Structural features were obtained from their elemental microanalyses, magnetic susceptibility, molar conductance, FT-IR, UV–Vis, LC-Mass and 1HNMR spectral studies. The UV–Vis, magnetic susceptibility and molar conductance data of the complexes suggest a tetrahedral geometry around the central metal ion except, VOII complexes that has square pyramidal geometry, but CrIII and CeIII octahedral geometry. The biological activity for the ligand (L1) and its Vanadium and Cadmium complexes were studied. Structural geometries of compounds also were suggested in gas phase by using theoretical treatments, using Hyper Chem-6 program for the molecular mechanics and semi-empirical calculations. The heat of formation (?Hf ?) and binding energy (?Eb) in the temperature of 298K for the free ligand (L1) and their metal complexes were calculated by PM3 and ZINDO/I methods. The electrostatic potential of the free ligands were calculated to investigate the reactive sites of the molecules.Bacteriological evaluation of considerable number of these compounds were maintained using organisms Escherichia coli and Staphylococcus aureus,and they were found to exhibit the high effect of activity. This may be attributed to the impact of both the Schiff bases and the metal present in these complexes.


2010 ◽  
Vol 75 (5) ◽  
pp. 629-637 ◽  
Author(s):  
Gajendra Kumar ◽  
Dharmendra Kumar ◽  
C.P. Singh ◽  
Amit Kumar ◽  
V.B. Rana

M(III) complexes of Cr, Mn and Fe with a Schiff base derived from 2-amino-4-ethyl-5-hydroxy benzaldehyde and thiocarbohydrazide were synthesized and characterized by several techniques, including elemental analysis (C,H,N), molar conductance measurements, magnetic measurements, and electronic, mass and IR spectral studies. Based on these studies, a fivecoordinated square pyramidal geometry for all the complexes was proposed. The Schiff base ligand and the complexes were also tested for their antimicrobial activity (against the bacteria Escherichia coli, Staphylococcus aureus, Pseudomonas aeruginosa and Bacillus megaterium, and the fungi Kluyveromyces fragilis, Rhodotorula rubra, Candida albicans and Trichoderma reesei) to assess their inhibiting potential. An attempt was also made to correlate the antimicrobial activity with the geometry of the complexes. All complexes were found to be less active against the pathogens E. coli, S. aureus and P. aeruginosa. The Cr(III) complex showed the best antimicrobial activity, but the ligand alone was found to be active against the fungus T. reesei.


Sign in / Sign up

Export Citation Format

Share Document