scholarly journals Unsteady Hydromagnetic Heat and Mass Transfer Flow of a Heat Radiating and Chemically Reactive Fluid Past a Flat Porous Plate with Ramped Wall Temperature

2013 ◽  
Vol 2013 ◽  
pp. 1-12 ◽  
Author(s):  
R. Nandkeolyar ◽  
M. Das ◽  
P. Sibanda

Unsteady hydromagnetic free convective flow of a viscous, incompressible, electrically conducting, and heat radiating fluid past a flat plate with ramped wall temperature and suction/blowing is studied. The governing equations are first subjected to Laplace transformation and then inverted numerically usingINVLAProutine of Matlab. The numerical solutions of the fluid properties are presented graphically while the skin friction and heat and mass transfer coefficients are presented in tabular form. The results are verified by a careful comparison with results in the literature for certain parameter values.

2019 ◽  
Vol 7 (1) ◽  
pp. 69-77
Author(s):  
Sujan Sinha ◽  
◽  
Maushumi Mahanta ◽  

A parametric study to investigate the effect of thermal diffusion (Soret effect) on an MHD mixed convective heat and mass transfer flow of an incompressible viscous electrically conducting fluid past a vertical porous plate. The magnetic reynolds number is assumed to be small that the induced magnetic field can be neglected as compared with the applied magnetic field. Sherwood number at the plate are demonstrated graphically for various values of the parameters involved in the problem


Author(s):  
J. Buggaramulu ◽  
M. Venkatakrishna ◽  
Y. Harikrishna

The objective of this paper is to analyze an unsteady MHD free convective heat and mass transfer boundary flow past a semi-infinite vertical porous plate immersed in a porous medium with radiation and chemical reaction. The governing equations of the flow field are solved numerical a two term perturbation method. The effects of the various parameters on the velocity, temperature and concentration profiles are presented graphically and values of skin-frication coefficient, Nusselt number and Sherwood number for various values of physical parameters are presented through tables.


2014 ◽  
Vol 136 (12) ◽  
Author(s):  
Raj Nandkeolyar ◽  
Peri K. Kameswaran ◽  
Sachin Shaw ◽  
Precious Sibanda

We investigated heat and mass transfer on water based nanofluid due to the combined effects of homogeneous–heterogeneous reactions, an external magnetic field and internal heat generation. The flow is generated by the movement of a linearly stretched surface, and the nanofluid contains nanoparticles of copper and gold. Exact solutions of the transformed model equations were obtained in terms of hypergeometric functions. To gain more insights regarding subtle impact of fluid and material parameters on the heat and mass transfer characteristics, and the fluid properties, the equations were further solved numerically using the matlab bvp4c solver. The similarities and differences in the behavior, including the heat and mass transfer characteristics, of the copper–water and gold–water nanofluids with respect to changes in the flow parameters were investigated. Finally, we obtained the numerical values of the skin friction and heat transfer coefficients.


2019 ◽  
Vol 8 (4) ◽  
pp. 1966-1970

A parametric study to investigate the effect of chemical reaction parameter on an MHD mixed convective mass transfer flow of an incompressible viscous electrically conducting fluid past an infinite vertical porous plate. The equations of motion are work out by assuming Laplace Transform approach. The velocity profile, temperature, concentration, viscous drag, Nusselt number and the rate of mass transfer are discussed graphically by assuming some arbitrary criterion given in the present paper and physical descriptions are made. It is emphasized from the graphical portion that chemical species retards the fluid flow


2016 ◽  
Vol 13 (1) ◽  
pp. 39-50 ◽  
Author(s):  
Patakota Sudarsana Reddy ◽  
Ali J. Chamkha

The effect of thermophoresis on  heat and mass transfer flow of a micropolar fluid in the presence of Soret and Dufour effects past a vertical porous plate have been investigated . The transformed conservation equations are solved numerically using an optimized, extensively validated, variational finite element analysis. The influence of important non-dimensional parameter, Suction parameter ( ), Soret parameter (Sr), Dufour parameter (Du) and thermophoretic parameter (?) on velocity, angular velocity (micro-rotation), temperature and concentration fields as well as shear stress, Nusselt number and Sherwood number are examined in detail and the results are shown in graphically and in tabular form to know the physical importance of the problem. It is found  that the imposition of wall fluid suction (V0>0) in this present problem of flow has the effect of depreciating the  velocity, micro-rotation, temperature and concentration boundary layer thicknesses at every finite value of ?. 


A parametric study to inspect the effect of heat and mass transfer characteristics with Hall current and radiation past a uniformly accelerated porous plate is prepared. The equations of motion are simplified by using the technique of Laplace transformation. The flow characteristics with viscous drag, Nusselt number and Sherwood number are conferred through different graphs by taking some subjective conditions given in the present paper and physical interpretations are described. It is highlited from graphical section that the rising of Prandtl number and heat radiation trim down the temperature profile gradually


2010 ◽  
Vol 37 (4) ◽  
pp. 263-287 ◽  
Author(s):  
Hemant Poonia ◽  
R.C. Chaudhary

An unsteady, two-dimensional, hydromagnetic, laminar mixed convective boundary layer flow of an incompressible and electrically-conducting fluid along an infinite vertical plate embedded in the porous medium with heat and mass transfer is analyzed, by taking into account the effect of viscous dissipation. The dimensionless governing equations for this investigation are solved analytically using two-term harmonic and non-harmonic functions. Numerical evaluation of the analytical results is performed and graphical results for velocity, temperature and concentration profiles within the boundary layer are discussed. The results show that increased cooling (Gr > 0) of the plate and the Eckert number leads to a rise in the velocity profile. Also, an increase in Eckert number leads to an increase in the temperature. Effects of Sc on velocity and concentration are discussed and shown graphically.


Sign in / Sign up

Export Citation Format

Share Document