scholarly journals A Double Power Reaching Law of Sliding Mode Control Based on Neural Network

2013 ◽  
Vol 2013 ◽  
pp. 1-9 ◽  
Author(s):  
Yu-Xin Zhao ◽  
Tian Wu ◽  
Yan Ma

For discrete system, the reaching law election and controller design are two crucial and important problems. In this paper, an improved double power reaching law of SMC and a controller combined with neural network have been investigated. Theory proves that this method can eliminate the chattering and increase the reaching rate. Furthermore, when there is a certain external interference, the regulating function of neural network can ensure strong robustness of the system. Simulation results show that compared with exponential reaching law, single power reaching law, and traditional double power reaching law, the proposed reaching law has faster convergence speed and better dynamic performance.

2015 ◽  
Vol 2015 ◽  
pp. 1-10 ◽  
Author(s):  
Yao Zhang ◽  
Yu-Xin Zhao

For spacecraft tracking control system, the reaching law election and controller design are two crucial and important problems. In this paper, spacecraft tracking system is considered as a discrete-time system, a mixed variable speed reaching law of SMC, and a controller for spacecraft tracking system has been investigated. Theory proves that this method can ensure the stability of spacecraft system and eliminate the chattering phenomenon. Furthermore, when spacecraft is inflicted by a certain external interference, the regulating function of neural network can ensure strong robustness of the system. Simulation results show that, compared with exponential reaching law and classical variable speed reaching law, the proposed reaching law has better suppress chattering effect and dynamic performance.


Author(s):  
Legrioui Said ◽  
Rezgui Salah Eddine ◽  
Benalla Hocine

The most important problem in the control of induction machine (IM) is the change of its parameters, especially the stator resistance and rotor-time constant. The objective of<em> </em>this paper is to implement a new strategy in sensorless direct torque control (DTC) of an IM drive. The rotor flux based model reference adaptive system (MRAS) is used<em> </em>to estimate conjointly<em> </em>the rotor<em> </em>speed, the stator resistance and the inverse rotor time constant, the process of the estimation is performed on-line by a new MRAS-based artificial neural network (ANN) technique. Furthermore, the drive is complemented with a new exponential reaching law (ERL), based on the sliding mode control (SMC) to significantly improve the performances of the system control compared to the conventional SMC which is known to be susceptible to the annoying chattering phenomenon. An experimental investigation was carried out via the Matlab/Simulink with real time interface (RTI) and dSPACE (DS1104) board where the behavior of the proposed method was tested at different points of IM operation.


Author(s):  
Jianmin Wang ◽  
Yunjie Wu ◽  
Xiaodong Liu

For a hypersonic flight vehicle with highly coupling nonlinear, a sliding mode controller based on reaching law is designed for its longitudinal motion model. Two proposals of reaching law are designed. One of which is a variable exponential reaching law, the other one is compound reaching law which consists of a conventional exponential reaching law and a power rate reaching law. The reaching law controller can speed up the system states arriving at the sliding mode condition, at the same time, it can guarantee better robustness. Simulation analysis is conducted for trimmed cruise condition of 110,000 ft and Mach 15, in which the responses of the vehicle to a step change of altitude and velocity respectively are analyzed. Simulation results show that the controller based on variable exponential reaching law enables the system to faster tracking speed than the conventional reaching law. Moreover the compound reaching law controller has shorter tracking time and strong robustness against parameters uncertainties.


In this paper, the load and line variations are analyzed for Sliding Mode reaching laws. Mathematical modeling has been done for all proposed sliding mode reaching laws, they are Exponential reaching law, Sigmoid reaching law, Tan hyperbolic, Robust reaching law, Improved tan hyperbolic reaching law and Double power reaching law. SMC has less sensitive for load and line disturbances. SMC (Sliding Mode Control) gives sensitive for load and line mutations due to chattering phenomenon. The comparative analyses for these reaching laws have been tested in buck converter. Chattering of all reaching laws are depicted. Among these reaching laws, tan hyperbolic reaching law gives efficient and insensitive for line and load mutations, even for parametric uncertainties and simulation results are validated through MATLAB/Simulink


Author(s):  
Xiaolei Shi ◽  
Yipeng Lan ◽  
Yunpeng Sun ◽  
Cheng Lei

This paper presents a sliding mode observer (SMO) with new reaching law (NRL) for observing the real-time linear speed of a controllable excitation linear synchronous motor (CELSM). For the purpose of balancing the dilemma between the rapidity requirement of dynamic performance and the chattering reduction on sliding mode surface, the proposed SMO with NRL optimizes the reaching way of the conventional constant rate reaching law (CRRL) to the sliding mode surface by connecting the reaching process with system states and the sliding mode surface. The NRL is based on sigmoid function and power function, with proper options of exponential term and power term, the NRL is capable of eliminating the effect of chattering on accuracy of the angular position estimation and speed estimation. Compared with conventional CRRL, the SMO with NRL achieves suppressing the chattering phenomenon and tracking the transient process rapidly and accurately. The stability analysis is given to prove the convergence of the SMO through the Lyapunov stability theory. Simulation and experimental results show the effectiveness of the proposed NRL method.


Electronics ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 831
Author(s):  
Izzat Al-Darraji ◽  
Dimitrios Piromalis ◽  
Ayad A. Kakei ◽  
Fazal Qudus Khan ◽  
Milos Stojemnovic ◽  
...  

Aerial Robot Arms (ARAs) enable aerial drones to interact and influence objects in various environments. Traditional ARA controllers need the availability of a high-precision model to avoid high control chattering. Furthermore, in practical applications of aerial object manipulation, the payloads that ARAs can handle vary, depending on the nature of the task. The high uncertainties due to modeling errors and an unknown payload are inversely proportional to the stability of ARAs. To address the issue of stability, a new adaptive robust controller, based on the Radial Basis Function (RBF) neural network, is proposed. A three-tier approach is also followed. Firstly, a detailed new model for the ARA is derived using the Lagrange–d'Alembert principle. Secondly, an adaptive robust controller, based on a sliding mode, is designed to manipulate the problem of uncertainties, including modeling errors. Last, a higher stability controller, based on the RBF neural network, is implemented with the adaptive robust controller to stabilize the ARAs, avoiding modeling errors and unknown payload issues. The novelty of the proposed design is that it takes into account high nonlinearities, coupling control loops, high modeling errors, and disturbances due to payloads and environmental conditions. The model was evaluated by the simulation of a case study that includes the two proposed controllers and ARA trajectory tracking. The simulation results show the validation and notability of the presented control algorithm.


Complexity ◽  
2019 ◽  
Vol 2019 ◽  
pp. 1-10 ◽  
Author(s):  
Ruiguo Liu ◽  
Xuehui Gao

A new neural network sliding mode control (NNSMC) is proposed for backlash-like hysteresis nonlinear system in this paper. Firstly, only one neural network is designed to estimate the unknown system states and hysteresis section instead of multiscale neural network at former researches since that can save computation and simplify the controller design. Secondly, a new NNSMC is proposed for the hysteresis nonlinearity where it does not need tracking error transformation. Finally, the Lyapunov functions are adopted to guarantee the stabilities of the identification and control strategies semiglobally uniformly ultimately bounded (UUB). Two cases simulations are proved the effectiveness of the presented identification approach and the performance of the NNSMC.


2017 ◽  
Vol 872 ◽  
pp. 337-345
Author(s):  
Yan Dong Chen

Based on the dynamic model of 1/4 vehicle suspension, an active control system is designed using the fractional order exponential reaching law of model following variable structure control strategy. An active suspension with linear quadratic optimal control is used as the reference model. The sliding mode switching surface parameters is designed by pole placement method to ensure the stability of the system. At the same time, combined with the index reaching law proposed by Professor Gao Wei Bing and the definition and properties of fractional index, constructs a similar fractional order exponent reaching law to improve the dynamic quality of sliding mode motion. And in MATLAB, system modeling and controller design are implemented. By setting up experiments, the different suspensions are compared. The results show that compared with the passive suspension, the performance of the vehicle can be improved better, and the performance of the tracking reference model has good tracking performance. Moreover, compared with the integral exponential reaching law, the chattering can be more effectively weakened. Finally, before and after the change of vehicle parameters in the simulation, the results show that the system has good robustness.


Sign in / Sign up

Export Citation Format

Share Document