scholarly journals Turbine Rotor Disk Health Monitoring Assessment Based on Sensor Technology and Spin Tests Data

2013 ◽  
Vol 2013 ◽  
pp. 1-8 ◽  
Author(s):  
Ali Abdul-Aziz ◽  
Mark Woike

The paper focuses on presenting data obtained from spin test experiments of a turbine engine like rotor disk and assessing their correlation to the development of a structural health monitoring and fault detection system. The data were obtained under various operating conditions such as the rotor disk being artificially induced with and without a notch and rotated at a rotational speed of up to 10,000 rpm under balanced and imbalanced state. The data collected included blade tip clearance, blade tip timing measurements, and shaft displacements. Two different sensor technologies were employed in the testing: microwave and capacitive sensors, respectively. The experimental tests were conducted at the NASA Glenn Research Center’s Rotordynamics Laboratory using a high precision spin system. Disk flaw observations and related assessments from the collected data for both sensors are reported and discussed.

Author(s):  
J. Luo ◽  
B. Lakshminarayana

The 3-D viscous flowfield in the rotor passage of a single-stage turbine, including the tip-leakage flow, is computed using a Navier-Stokes procedure. A grid-generation code has been developed to obtain embedded H grids inside the rotor tip gap. The blade tip geometry is accurately modeled without any “pinching”. Chien’s low-Reynolds-number k-ε model is employed for turbulence closure. Both the mean-flow and turbulence transport equations are integrated in time using a four-stage Runge-Kutta scheme. The computational results for the entire turbine rotor flow, particularly the tip-leakage flow and the secondary flows, are interpreted and compared with available data. The predictions for major features of the flowfield are found to be in good agreement with the data. Complicated interactions between the tip-clearance flows and the secondary flows are examined in detail. The effects of endwall rotation on the development and interaction of secondary and tip-leakage vortices are also analyzed.


Author(s):  
Ulrich Rathmann ◽  
Sven Olmes ◽  
Alex Simeon

Performance and efficiency optimization is one of the major tasks in the turbo machinery industry. Therefore efforts for scientific and technical improvements focus on optimization and reduction of losses. Secondary losses are of major interest because of their parasitic character related to stage efficiency and power output. One of these losses is over tip leakage of blades. Common practice is a minimization of this clearance with abrasive/abradable combinations. With this technique the blade tip (abrasive material) can rub into its counterpart (heat-shield, abradable material on casings or liners) and therefore minimize the operating tip-clearance. This technology is well established in compressor and turbine engineering since many years [1]. Field experience shows that abrasive/abradable systems do not always work as intended. In some cases rubbing conditions are reversed so that the intended abradable cuts into the abrasive. Any benefit on operating tip-clearance will then be minor at best or even negative. Rubbing behavior is difficult to predict, especially for new materials or geometries where no experience is available. In close cooperation with the University of Applied Sciences Rapperswil (Switzerland), ALSTOM has developed a test rig that allows simulating engine-operating conditions and therefore evaluate abrasive/abradable combinations before actual implementation into an engine. The rig is designed to reproduce circumferential velocities and incursion rates that are typical for gas turbine engines in the compressor as well as in the turbine. Forces and temperatures are measured as quantitative data, visual appearance and metallographic condition of test specimens are recorded as qualitative data that allow a more detailed assessment of material combinations and operating conditions. This paper describes the design of a high-speed wear rig facility to test single blade and fully shrouded rub configurations. In addition the validation of the test rig against real engine experience and knowledge is shown.


1978 ◽  
Author(s):  
A. L. Chandler ◽  
A. R. Finkelstein

In this paper, a technique is presented for the detrmination of turbine rotor bade tip-to-stationary shroud clearance requirements utilizing fiber optics. To accomplish these tip clearance determinations, special rub pins were installed in the turbine shrouds, or tip-shoes, of a 10,000-hp engine. A test procedure was created based upon a transient dimensional analysis, and a cooled borescope and camera were developed. The clearances are presented from a series of successive engine tests.


Author(s):  
R. Heider ◽  
J. M. Duboue ◽  
B. Petot ◽  
G. Billonnet ◽  
V. Couaillier ◽  
...  

A 3D Navier-Stokes investigation of a high pressure turbine rotor blade including tip clearance effects is presented. The 3D Navier-Stokes code developed at ONERA solves the three-dimensional unsteady set of mass-averaged Navier-Stokes equations by the finite volume technique. A one step Lax-Wendroff type scheme is used in a rotating frame of reference. An implicit residual smoothing technique has been implemented, which accelerates the convergence towards the steady state. A mixing length model adapted to 3D configurations is used. The turbine rotor flow is calculated at transonic operating conditions. The tip clearance effect is taken into account. The gap region is discretized using more than 55,000 points within a multi-domain approach. The solution accounts for the relative motion of the blade and casing surfaces. The total mesh is composed of five sub-domains and counts 710,000 discretization points. The effect of the tip clearance on the main flow is demonstrated. The calculation results are compared to a 3D inviscid calculation, without tip clearance.


Author(s):  
Koichi Yonezawa ◽  
Junichi Sakamoto ◽  
Kazuyasu Sugiyama ◽  
Shuichi Ohmori ◽  
Shuichi Umezawa

Abstract Influences of age-related deterioration on the increase in rotor tip gap width are discussed numerically. In the gas turbine examined in the present study, there are two kinds of geometries around the rotor blade tip. In the first stage, there is clearance between the blade tip and the casing without any seal structures. On the other hand, there is a shroud and seal fin on the rotor blade tip. The blade geometries were measured using a 3-D scanner in a working power plant, and the tip clearances were varied by changing the casing contour. Steady-state CFD simulations were carried out. Tip gap widths were varied by shifting the casing wall. For simplicity, the blade geometries were not changed. The influence of tip clearance was examined by changing the geometries in each stage separately. Boundary conditions were determined using the previously developed hybrid method of heat balance analysis and CFD simulation, which can simulate the operating conditions of a working gas turbine. The results showed that the turbine performance degradation could spread to the following stage. Observation of entropy fields revealed that the increase in the tip leakage flow affected the flow in the following nozzle, and the loss increased.


2013 ◽  
Vol 2013 ◽  
pp. 1-10 ◽  
Author(s):  
Mark Woike ◽  
Ali Abdul-Aziz ◽  
Nikunj Oza ◽  
Bryan Matthews

The ability to monitor the structural health of the rotating components, especially in the hot sections of turbine engines, is of major interest to aero community in improving engine safety and reliability. The use of instrumentation for these applications remains very challenging. It requires sensors and techniques that are highly accurate, are able to operate in a high temperature environment, and can detect minute changes and hidden flaws before catastrophic events occur. The National Aeronautics and Space Administration (NASA), through the Aviation Safety Program (AVSP), has taken a lead role in the development of new sensor technologies and techniques for the in situ structural health monitoring of gas turbine engines. This paper presents a summary of key results and findings obtained from three different structural health monitoring approaches that have been investigated. This includes evaluating the performance of a novel microwave blade tip clearance sensor; a vibration based crack detection technique using an externally mounted capacitive blade tip clearance sensor; and lastly the results of using data driven anomaly detection algorithms for detecting cracks in a rotating disk.


Author(s):  
Takayuki Matsunuma ◽  
Takehiko Segawa

Tip leakage flow through the small gap between the blade tip and the casing wall in turbomachinery reduces the aerodynamic performance of the blade. New ring-type dielectric barrier discharge (DBD) plasma actuators have been developed to facilitate active control of the tip leakage flow of a turbine rotor. In the present study, the ring-type plasma actuators consisted of metallic wires coated with insulation material, mounted in an insulator embedded in the tip casing wall. For the fundamental experiments using a flat plate and a single airfoil with tip clearance, particle image velocimetry (PIV) was used to obtain two-dimensional velocity field measurements near the plate and blade tip regions. From flat plate experiments in a static flow field, it was confirmed that the operation of the plasma actuator generates an upward flow at the corner between the blade tip and the casing wall, and this forms a perpendicular obstacle to the tip leakage flow. In flat plate experiments on tip leakage flow in a wind tunnel, the forcibly-induced tip leakage flow was successfully dissipated by means of the plasma actuator flow control. In single airfoil experiments, the tip leakage flow was also reduced by the plasma actuator. In annular turbine rotor experiments, the plasma emission at the blade tip and its motion with blade rotation were determined. Single-element hot-wire anemometry was used to measure the turbulence intensity distributions at the turbine rotor exit. The amplitude of input voltage for the plasma actuator was varied from ±3.0 to ±6.0 kV. The high turbulence intensity region created by the tip leakage flow was reduced with an increase in the input voltage of the plasma actuator.


Author(s):  
Thorsten Pfister ◽  
Philipp Günther ◽  
Florian Dreier ◽  
Jürgen Czarske

Monitoring rotor deformations and vibrations dynamically is an important task for improving both the safety and the lifetime as well as the energy efficiency of motors and turbo machines. However, due to the high rotor speed encountered in particular at turbo machines, this requires concurrently high measurement rate and high accuracy, which is hardly possible to achieve with currently available measurement techniques. To solve this problem, in this paper, we present a novel nonincremental interferometric optical sensor that measures simultaneously the in-plane velocity and the out-of-plane position of laterally moving objects with micrometer precision and concurrently with microsecond temporal resolution. It will be shown that this sensor exhibits the outstanding feature that its measurement uncertainty is generally independent of the object velocity, which enables precise deformation and vibration measurements also at high rotor speed. Moreover, this sensor does not require an in situ calibration and it allows a direct measurement of blade velocity variations in contrast to blade tip timing systems. For application under harsh environmental conditions such as high temperatures, a robust and miniaturized fiber-optic sensor setup was developed. To demonstrate the capability of this sensor, measurements of tip clearance changes and rotor blade vibrations at varying operating conditions of a transonic centrifugal compressor test rig at blade tip velocities up to 600 m/s are presented among others.


Sign in / Sign up

Export Citation Format

Share Document