scholarly journals Evidence for PAH Removal Coupled to the First Steps of Anaerobic Digestion in Sewage Sludge

2013 ◽  
Vol 2013 ◽  
pp. 1-6 ◽  
Author(s):  
Glenda Cea-Barcia ◽  
Hélène Carrère ◽  
Jean Philippe Steyer ◽  
Dominique Patureau

Anaerobic degradation of polycyclic aromatic hydrocarbons has been brought to the fore, but information on removal kinetics and anaerobic degrading bacteria is still lacking. In order to explore the organic micropollutants removal kinetics under anaerobic conditions in regard to the methane production kinetics, the removal rate of 12 polycyclic aromatic hydrocarbons was measured in two anaerobic batch reactors series fed with a highly loaded secondary sludge as growth substrate. The results underscore that organic micropollutants removal is coupled to the initial stages of anaerobic digestion (acidogenesis and acetogenesis). In addition, the organic micropollutants kinetics suggest that the main removal mechanisms of these hydrophobic compounds are biodegradation and/or sequestration depending on the compounds.

2014 ◽  
Vol 665 ◽  
pp. 534-537
Author(s):  
Hong Wang ◽  
Hai Bo Li ◽  
Xin Wang ◽  
Ji Fu Ma

Degradation of polycyclic aromatic hydrocarbons (PAHs) and microbial quantity were investigated in aged PAHs-contaminated soil in a pot experiment with regrass and alfalfa. After 60 days germination the concentration of total PAHs in soil decreased by 37.57% and 38.41% with the treatment of ryegrass-microbe agent and alfalfa-microbe agent. The processes of ryegrass and alfalfa were 18.72% and 19.34%. The root system promoted the quantity of microbe and the microbial agent was benefit for the PAHs degrading microbe. And there was significant positive correlation between the number of PAHs degrading microorganisms and the removal rate of PAHs in the soil.


2019 ◽  
Vol 10 (4) ◽  
pp. 3789-3795 ◽  
Author(s):  
Neeta Bhagat ◽  
Pranita Roy ◽  
Sohini Singh ◽  
Tanu Allen

Increasing soil pollution all over the world has instigated global concerns as enormous quantities of toxic chemicals and heavy metals like cadmium, lead, mercury, petrochemicals, insecticides, polycyclic aromatic hydrocarbons (PAHs) and chlorophenols are finding their way into the environment, affecting the land and soil, causing soil pollution and thus posing a threat and menace to health and well- being of people and ecosystem. The ubiquitous dissemination, low bioavailability, high perseverance of contaminants like poly-hydrocarbon and metals in soil have the potentially destructive effects to human health, envisages to study the biodegradation of PAHs (polycyclic aromatic hydrocarbons) and PACs (polycyclic aromatic compounds). The diversity of micro-organisms that diminish the PAHs/PACs can be utilized in the advancement of bioremediation techniques. The role of metal-tolerant, (PAH)-degrading bacteria helps in the biodegradation of organic compounds at miscellaneous polluted sites. The isolation of (PAHs)-degrading bacteria from contaminated soil samples collected from garages and petrol pumps of Delhi and NCR region was carried out in the present study.  Also, the bacterial samples were tested for the tolerance towards 4 heavy metals- arsenic (As), lead (Pb), cadmium (Cd), and mercury (Hg). Morphological studies and biochemical tests were conducted to find the genera of the bacterial samples. The study indicates that hydrocarbons were degraded by the isolates P1, P2, P4, P5, P5*, G1, G3. These isolates were also found to be tolerant at a high concentration of metals (Arsenic, Cadmium, Mercury, and Lead) as minimum inhibitory concentration (MIC) was also calculated. Antibiotic susceptibility of the isolates was tested against various antibiotics. Thus the study suggests that the isolates identified as Pseudomonas aeruginosa, Acinetobacter baumanii, and Klebsiella pneumoniae are not only PAH-degrading but metal-tolerant and antibiotic-resistant too and are of immense potential for bioremediation of contaminated soils.


1998 ◽  
Vol 64 (1) ◽  
pp. 359-362 ◽  
Author(s):  
Matthias Kästner ◽  
Maren Breuer-Jammali ◽  
Bernd Mahro

ABSTRACT Degradation of polycyclic aromatic hydrocarbons (PAHs) and survival of bacteria in soil was investigated by applying different inoculation protocols. The soil was inoculated with Sphingomonas paucimobilis BA 2 and strain BP 9, which are able to degrade anthracene and pyrene, respectively. CFU of soil bacteria and of the introduced bacteria were monitored in native and sterilized soil at different pHs. Introduction with mineral medium inhibited PAH degradation by the autochthonous microflora and by the strains tested. After introduction with water (without increase of the pore water salinity), no inhibition of the autochthonous microflora was observed and both strains exhibited PAH degradation.


2014 ◽  
Vol 70 (10) ◽  
pp. 1617-1624 ◽  
Author(s):  
Izabela Siebielska

Changes in naphthalene (Naph), phenanthrene (Phe), pyrene (Pyr), benzo(a)pyrene (BaP) and benzo(ghi)perylene (BgP) concentrations in a mixture of sewage sludge and the organic fraction of municipal waste were determined during composting and anaerobic digestion. The processes were carried out on a laboratory scale. The selected polycyclic aromatic hydrocarbons (PAHs) were analyzed in the samples using gas chromatography-mass spectrometry. The rates at which the PAHs concentrations decreased were evaluated during composting and anaerobic digestion. The selected PAHs degradation kinetics were compared during these processes. The most important conclusion of this work is that composting is much more effective than anaerobic digestion in removing five PAHs from a mixture of sewage sludge and the organic fraction of municipal waste.


2020 ◽  
Vol 8 (9) ◽  
pp. 1402
Author(s):  
Filippo Dell’Anno ◽  
Christophe Brunet ◽  
Leonardo Joaquim van Zyl ◽  
Marla Trindade ◽  
Peter N. Golyshin ◽  
...  

Investigations on the ability of bacteria to enhance removal of hydrocarbons and reduce heavy metal toxicity in sediments are necessary to design more effective bioremediation strategies. In this study, five bacterial strains, Halomonas sp. SZN1, Alcanivorax sp. SZN2, Pseudoalteromonas sp. SZN3, Epibacterium sp. SZN4, and Virgibacillus sp. SZN7, were isolated from polluted sediments from an abandoned industrial site in the Gulf of Naples, Mediterranean Sea, and tested for their bioremediation efficiency on sediment samples collected from the same site. These bacteria were added as consortia or as individual cultures into polluted sediments to assess biodegradation efficiency of polycyclic aromatic hydrocarbons and heavy metal immobilisation capacity. Our results indicate that these bacteria were able to remove polycyclic aromatic hydrocarbons, with a removal rate up to ca. 80% for dibenzo-anthracene. In addition, these bacteria reduced arsenic, lead, and cadmium mobility by promoting their partitioning into less mobile and bioavailable fractions. Microbial consortia generally showed higher performance toward pollutants as compared with pure isolates, suggesting potential synergistic interactions able to enhance bioremediation capacity. Overall, our findings suggest that highly polluted sediments select for bacteria efficient at reducing the toxicity of hazardous compounds, paving the way for scaled-up bioremediation trials.


1998 ◽  
Vol 44 (8) ◽  
pp. 743-752 ◽  
Author(s):  
Michael D Aitken ◽  
William T Stringfellow ◽  
Robert D Nagel ◽  
Chikoma Kazunga ◽  
Shu-Hwa Chen

Ten bacterial strains were isolated from seven contaminated soils by enrichment with phenanthrene as the sole carbon source. These isolates and another phenanthrene-degrading strain were examined for various characteristics related to phenanthrene degradation and their ability to metabolize 12 other polycyclic aromatic hydrocarbons (PAH), ranging in size from two to five rings, after growth in the presence of phenanthrene. Fatty acid methyl ester analysis indicated that at least five genera (Agrobacterium, Bacillus, Burkholderia, Pseudomonas, and Sphingomonas) and at least three species of Pseudomonas were represented in this collection. All of the strains oxidized phenanthrene according to Michaelis-Menten kinetics, with half-saturation coefficients well below the aqueous solubility of phenanthrene in all cases. All but one of the strains oxidized 1-hydroxy-2-naphthoate following growth on phenanthrene, and all oxidized at least one downstream intermediate from either or both of the known phenanthrene degradation pathways. All of the isolates could metabolize (oxidize, mineralize, or remove from solution) a broad range of PAH, although the exact range and extent of metabolism for a given substrate were unique to the particular isolate. Benz[a]anthracene, chrysene, and benzo[a]pyrene were each mineralized by eight of the strains, while pyrene was not mineralized by any. Pyrene was, however, removed from solution by all of the isolates, and the presence of at least one significant metabolite from pyrene was observed by radiochromatography for the five strains in which such metabolites were sought. Our results support earlier indications that the mineralization of pyrene by bacteria may require unique metabolic capabilities that do not appear to overlap with the determinants for mineralization of phenanthrene or other high molecular weight PAH.Key words: kinetics, polycyclic aromatic hydrocarbons, phenanthrene, mineralization, benzo[a]pyrene.


1991 ◽  
Vol 37 (12) ◽  
pp. 924-932 ◽  
Author(s):  
J. M. Foght ◽  
D. W. S. Westlake

Forty-three bacterial strains were collected from various environmental and commercial sources and their ability to degrade polycyclic aromatic hydrocarbons (PAHs) was confirmed using the criteria of growth, mineralization, and oxidation. Undigested genomic DNA from these strains was blotted by Southern transfer to replicate membranes, which were probed either with purified plasmids (e.g., TOL and NAH7, associated with toluene and naphthalene degradation, respectively) or with genomic DNA from the other strains. The isolates were grouped according to hybridization and PAH-degradation results. One group of eight strains grew on naphthalene vapors as sole carbon source and hybridized with archetypical NAH plasmids. Another group of six isolates mineralized phenanthrene but could not grow on naphthalene, and their cryptic plasmids hybridized with Pseudomonas sp. HL7b, which degrades a wide range of PAHs. The remaining isolates, which could not grow on naphthalene but mineralized and (or) oxidized a variety of PAHs, hybridized with neither the pure plasmids nor heterologous genomic DNA, implying that their PAH-degradative genes were significantly dissimilar. This suggests that using TOL or NAH plasmids to probe an environmental population might reveal toluene- or naphthalene-degradative genes but would underestimate the occurrence of PAH-degradative genes. We suggest that a suite of probes would be necessary to evaluate the PAH-degradation potential of a mixed population. Key words: polycyclic aromatic hydrocarbons, degradative plasmids, NAH plasmid, TOL plasmid, hybridization.


2012 ◽  
Vol 610-613 ◽  
pp. 1359-1363 ◽  
Author(s):  
Hong Wang ◽  
Hai Bo Li

To improve phytoremediation efficiency of aged polycyclic aromatic hydrocarbons (PAHs), in-situ experiment was conducted in the Shenfu wastewater irrigation district in northeast China. Several strengthen measures, including microbe agent, farmyard manure, N-fertilizer, fungi, were taken. The results showed strengthen measures increased of PAHs to alfalfa and ryegrass were 46.36% and 51.12%. The removal rate of 35.98% and 37.54% were achieved for the removal to 5-6 rings PAHs. In-situ experiment proved that strengthened phytoremediation didn’t cause the accumulation of PAHs in inside plant bodies, and it could be used in the farm soil contaminated with PAHs.


Sign in / Sign up

Export Citation Format

Share Document