scholarly journals The Effect of Various Test Parameters on the Steady Flow Test Results of a Four-Valve Spark Ignition Engine: A Tentative Approach toward Standardization

2013 ◽  
Vol 5 ◽  
pp. 482317 ◽  
Author(s):  
A. Mohammadebrahim ◽  
M. B. Shafii ◽  
S. K. Hannani
2016 ◽  
Vol 101 ◽  
pp. 622-629 ◽  
Author(s):  
Cristian Catellani ◽  
Giulio Cazzoli ◽  
Stefania Falfari ◽  
Claudio Forte ◽  
Gian Marco Bianchi

Author(s):  
Michael Marr ◽  
James S. Wallace ◽  
Larry Pershin ◽  
Sanjeev Chandra ◽  
Javad Mostaghimi

A novel metal-based thermal barrier coating was tested in a spark-ignition engine. The coating was applied to the surface of aluminum plugs and exposed to in-cylinder conditions through ports in the cylinder wall. Temperatures were measured directly behind the coating and within the plug 3 and 11 mm from the surface. In-cylinder pressures were measured and analyzed to identify and quantify knock. Test results suggest the coating does not significantly reduce overall heat transfer, but it does reduce the magnitude of temperature fluctuations at the substrate surface. It was found that heat transfer can be reduced by reducing the surface roughness of the coating. The presence of the coating did not promote knock.


Author(s):  
Michael A. Marr ◽  
James S. Wallace ◽  
Larry Pershin ◽  
Sanjeev Chandra ◽  
Javad Mostaghimi

A novel metal-based thermal barrier coating was tested in a spark-ignition engine. The coating was applied to the surface of aluminum plugs and exposed to in-cylinder conditions through ports in the cylinder wall. Temperatures were measured directly behind the coating and within the plug 3 and 11 mm from the surface. In-cylinder pressures were measured and analyzed to identify and quantify knock. Test results suggest the coating does not significantly reduce overall heat transfer, but it does reduce the magnitude of temperature fluctuations at the substrate surface. It was found that heat transfer can be reduced by reducing the surface roughness of the coating. The presence of the coating did not promote knock.


Author(s):  
V Bermúdez ◽  
R Payri ◽  
F J Salvador ◽  
A H Plazas

A deep analysis of the injection rate characteristics and spray behaviour of the most used nozzle types in diesel engines [microSAC and valve covered orifice (VCO)] has been carried out. In order to compare the injection characteristics and the spray behaviour of both nozzle types, several experimental installations were used, such as the steady flow test rig, injection rate test rig, spray momentum test rig, and nitrogen test rig, to obtain a full hydrodynamic and spray characterization. The study of the flow in both nozzles was analysed under steady flow conditions in the steady flow test rig and in real unsteady flow conditions in the injection rate test rig and the spray momentum test rig. The macroscopic properties of the spray (tip penetration and spray cone angle) were characterized using a high-pressure test rig. From the point of view of the internal flow behaviour, the results showed interesting differences in the permeability of both nozzle geometries, with a higher discharge coefficient in the microSAC nozzle. However, from the point of view of air entrainment, the results showed a better quality of fuel-air mixing in the VCO nozzle. Besides the evidence from the experimental results, a theoretical analysis was carried out in order to identify the most important parameters that determine the spray behaviour and thus justify the different macroscopic behaviour of both nozzles.


Author(s):  
Damian E. Ramajo ◽  
Norberto M. Nigro

Numerical and experimental techniques were applied in order to study the in-cylinder flow field in a commercial four-valve per cylinder spark ignition engine. Investigation was aimed at analyzing the generation and evolution of tumble-vortex structures during the intake and compression strokes, and the capacity of this engine to promote turbulence enhancement during tumble degradation at the end of the compression stroke. For these purposes, three different approaches were analyzed. First, steady flow rig tests were experimentally carried out, and then reproduced by computational fluid dynamics (CFD). Once CFD was assessed, cold dynamic simulations of the full engine cycle were performed for several engine speeds (1500 rpm, 3000 rpm, and 4500 rpm). Steady and cold dynamic results were compared in order to assess the feasibility of the former to quantify the in-cylinder flow. After that, combustion was incorporated by means of a homogeneous heat source, and dynamic boundary conditions were introduced in order to approach real engine conditions. The combustion model estimates the burning rate as a function of some averaged in-cylinder flow variables (temperature, pressure, turbulent intensity, and piston position). Results were employed to characterize the in-cylinder flow field of the engine and to establish similarities and differences between the three performed tests that are currently used to estimate the engine mean flow characteristics (steady flow rig, and cold and real dynamic simulations).


Author(s):  
E Sher ◽  
Y Hacohen

The effect of the amount of hydrogen addition on the fuel consumption and emission of a spark ignition engine has been studied. Dynamometer test results for a wide range of engine speeds, engine loads, equivalent ratio and hydrogen enrichment under steady state operation are presented, and the engine requirements for minimum b.s.f.c. are specified. A detailed model to simulate a four-stroke cycle of a spark ignition engine fuelled with hydrogen-enriched gasoline was used to predict the optimal amount of hydrogen supplement as well as the corresponding minimum best torque (MBT) optimal throttle position and emissions levels of CO and NOx. It has been shown that a significant reduction in the b.s.f.c, in the order of 20 per cent, is achieved with hydrogen-enriched gasoline for a hydrogen-fuel mass ratio of 6 per cent and equivalence ratio of 0.65. A very smooth operation has been observed under these conditions. The energy conversion gain is prominent at partial loads and depends only to a limited extent on the engine speed.


2013 ◽  
Vol 1 (2) ◽  
pp. 110-92
Author(s):  
Miqdam Tariq Chaichan

This paper examines the results of performance of a single cylinder spark-   ignition engine fuelled with 20% methanol +80% gasoline (M20), compared to gasoline. The experiments were conducted at stoichiometric air–fuel ratio at wide open throttle and variable speed conditions, over the range of 1000 to 2600 rpm. The tests were conducted at higher useful compression ratio using optimum spark timings and adding recirculated exhaust gas with 20% to suction manifold. The test results show that the higher compression ratio for the tested gasoline was 7:1, 9.5:1 for M20 and 9:1 for M20 with added EGR. M20 at higher useful compression ratio (HUCR) and optimum spark timing (OST) characteristics are significantly different from gasoline. Within the tested speed range, M20 consistently produces higher brake thermal efficiency by about 6%. Also it resulted in approximately 3.06% lower brake specific fuel consumption compared with gasoline. Adding EGR to M20 caused reduction in HUCR and advancing the OST. This addition increased brake specific fuel consumption (BSFC), reduced brake thermal energy, volumetric efficiency and exhaust gas temperatures.


Sign in / Sign up

Export Citation Format

Share Document