scholarly journals Effect of Testing Rate on Adhesion Properties of Acrylonitrile-Butadiene Rubber/Standard Malaysian Rubber Blend-Based Pressure-Sensitive Adhesive

2013 ◽  
Vol 2013 ◽  
pp. 1-6
Author(s):  
B. T. Poh ◽  
Junidah Lamaming

The dependence of loop tack, peel strength, and shear strength of NBR/SMR L blend-based pressure-sensitive adhesives on the rate of testing was investigated using coumarone-indene resin and toluene as the tackifier and solvent, respectively. A 40% NBR content in the NBR/SMR L blend was used throughout the experiment. The adhesion properties were measured by a Lloyd Adhesion Tester operating at different rates of testing. The result indicates that loop tack, peels strength, and shear strength increase with the rate of testing due to the viscoelastic response of the adhesive. At low testing rate, the failure mode is cohesive in nature whereas adhesion failure mode occurs at higher testing rates. Adhesion properties also increase with the increase in adhesive coating thickness, an observation which is attributed to the wettability of the adhesive and viscoelastic behavior of the rubber blend.

2014 ◽  
Vol 2014 ◽  
pp. 1-6 ◽  
Author(s):  
B. T. Poh ◽  
J. Lamaming ◽  
G. S. Tay

Viscosity and adhesion properties of NBR/SMR L blend based pressure-sensitive adhesive were investigated using coumarone-indene resin, toluene, and poly(ethylene terephthalate) (PET) as tackifier, solvent, and coating substrate, respectively. Coumarone-indene resin content was fixed at 40 parts per hundred parts of rubber (phr) in the adhesive formulation. The ratio of NBR/SMR L blend used was 0, 20, 40, 60, 80, and 100% of NBR content. Four different thicknesses, that is, 30, 60, 90, and 120 µm, were used to coat the PET film. The viscosity of adhesive was determined by a Brookfield viscometer, whereas loop tack, peel strength, and shear strength were measured using a Lloyd Adhesion Tester operating at 30 cm/min. Result indicates that the viscosity, loop tack, and shear strength of blend adhesives increase with % NBR. However, for peel strength, it indicates a maximum at 40% NBR blend ratio for the three modes of peel tests. In all cases, 120 µm coated sample consistently exhibits the highest adhesion values compared to the other coating thicknesses, an observation which is associated with the higher volume of adhesive in the former system.


Polymers ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 199
Author(s):  
Theerarat Sengsuk ◽  
Ponusa Songtipya ◽  
Ekwipoo Kalkornsurapranee ◽  
Jobish Johns ◽  
Ladawan Songtipya

A novel active bio-based pressure-sensitive adhesive incorporating cinnamon oil (Bio-PSA/CO) obtained from the mixture of natural rubber (NR), xyloglucan (XG), and cinnamon oil (CO) for food antimicrobial applications were successfully developed by using a two-roll mill mixer. The effect of the main process factors (i.e., nip gap and mastication time) and XG content on the adhesion properties of the obtained PSA were investigated with different coated substrates including kraft paper, nylon film, polypropylene (PP) film, and aluminum foil (Al). The results suggested that the developed NR-PSA/CO could be applied well to all types of substrate materials. Peel strength and shear strength of the NR-PSA/CO with all substrate types were in the ranges of ~0.03 × 102–5.64 × 102 N/m and ~0.24 × 104–9.50 × 104 N/m2, respectively. The proper processed condition of the NR-PSA/CO was represented with a nip gap of 2 mm and a mastication time of 15 min. An increase in XG content up to 40–60 phr can improve the adhesion properties of the adhesive. The resulting material could be used as an active sticky patch to extend the shelf-life of food in a closed packaging system. The shelf-life of the food samples (banana cupcake) could be extended from 4 to 9 days with NR-PSA/CO patch.


Holzforschung ◽  
2012 ◽  
Vol 66 (1) ◽  
Author(s):  
Amir Sahaf ◽  
Karl Englund ◽  
Marie-Pierre G. Laborie

Abstract The development of adhesives that have good initial adhesion (tack) that provides improved mat integrity during shape-forming of wood composites has been the subject of recent research. Hybrid adhesives were made based on thermosetting phenol-formaldehyde (PF), to which three tacky adhesives were added: high tack fish glue (FG), dextrin glue (DX) and a commercial acrylic, pressure-sensitive adhesive (PSA). Tacky adhesives were blended with PF at weight levels of 25%, 50% and 75%. The time-dependent tack development of the resulting hybrid adhesives was evaluated by means of a texture analyzer. The bond strength of adhesives was measured after curing by shear block test. PF/DX blends exhibited the highest tack during longer open times, while blends of PF and FG had low tack during shorter times. PF/PSA blends lost their bond strength completely after being heated at the curing temperature of PF. PF/FG blends did not show a significant decrease in bond strength compared to pure PF. The addition of DX had no effect on shear strength at ratios <75%.


1999 ◽  
Vol 17 (10) ◽  
pp. 2093-2106
Author(s):  
N.M. Panagiotou ◽  
G. Bamopoulos ◽  
A.K. Stubos ◽  
P. Patsilinacos ◽  
Z.B. Maroulis

Sign in / Sign up

Export Citation Format

Share Document