scholarly journals Ruminal degradability of agro-industrial fruit residues

2016 ◽  
Vol 37 (1) ◽  
pp. 279 ◽  
Author(s):  
Alexandre Paula Braga ◽  
Antonia Vilma de Andrade Ferreira Amâncio ◽  
Josemir De Souza Gonçalves ◽  
Liz Carolina da Silva Lagos Cortes Assis ◽  
Cicília Maria Silva Souza ◽  
...  

The aim of this study was to evaluate the chemical composition and ruminal degradability of the dry matter (DM), crude protein (CP) and neutral detergent fiber (NDF) of fruit residues. Three fistulated sheep were held collectively in a pen, and fed daily with the studied residues in a diet consisting of canarana grass (Echinochloa pyramidalis) and a concentrate of corn and soybeans. The animals were allowed an adjustment period of seven days. The residues were dried in the sun, crushed in a forage machine, sorted using a 4.0-mm sieve, and incubated for 3, 6, 12, 24, 48, 72, and 96 h using nonwoven bags (weight 60g/m2, 14 ×12 cm²). Chemical analyses of the residues were performed using a randomized block experimental design with split plots. The cherimoya and tamarind residues showed the highest concentrations of CP (12.66% and 11.79%) the ether extract of cherimoya residue was the highest at 22.30%stands out the sour soup residue. The cashew and guava residues showed the highest levels of lignin (22.13 and 18.34%). The effective degradability of DM for the pineapple and tamarind residues to a passage rate of 5%/h were 53.04% and 42.61%, respectively. The guava, cherimoya, and cashew residues showed lower values at 19.16%, 26.86%, and 29.21%, respectively. The cherimoya, guava and pineapple residues showed the highest values of potential degradability for CP at 87%, 81%, 86.02% and 90.94%, respectively, with an average effective degradability of 50.0% at the rate of 5%/h. The pineapple (35.38%) and tamarind residues (34.49%) showed higher values of the effective degradability of NDF at a passage rate of 5%/h. Among the studied residues, the pineapple residue showed the greatest potential for use in animal feed based on chemical composition and rates of degradability.

2019 ◽  
Vol 40 (6Supl3) ◽  
pp. 3605
Author(s):  
Ernestina dos Ribeiro Santos Neta ◽  
Luis Rennan Sampaio Oliveira ◽  
Rafael Mezzomo ◽  
Daiany Íris Gomes ◽  
Janaina Barros Luz ◽  
...  

This study evaluated the chemical composition and ruminal degradability of dry matter (DM), neutral detergent fiber corrected for ash and protein (NDFap) and crude protein (CP) in byproducts of African oil palm (palm cake, kernel or fiber), macaúba (pulp cake and kernel cake), acai (acai fruit), babassu (kernel cake) and pineapple (peel, crown and bagasse silage). Nineteen rumen-fistulated sheep were kept in individual stalls, receiving a daily diet composed of elephant grass silage and corn and soybean concentrate. After preparation in nylon bags, the byproduct samples were incubated for 0, 3, 6, 12, 16, 18, 24, 48, 72, 96, 120 and 144 hours, with three replicates of each ingredient per incubation time. The divergence between the protein nutritional value and energy nutritional value, based on discriminatory variables between groups, was estimated by cluster analysis. The effective degradability of DM, NDFap and CP for the different byproducts was, respectively, 35.9, 26.9 and 59.0% for palm cake; 48.3, 34.3 and 76.4% for palm kernel; 21.1, 6.6 and 50.3% for palm fiber; 34.3, 15.0 and 52.8% for macaúba pulp cake; 58.1; 63.0 and 51.6% for macaúba kernel cake; 49.7, 49.6 and 41.8% for babassu cake; 53.4, 40.5 and 79.8% for pineapple bagasse silage; and 21.3, 17.0 and 38.9% for acai fruit. Based on their NDFap and CP characteristics, the feeds were clustered in up to four different groups.


2021 ◽  
Vol 43 ◽  
pp. e53004
Author(s):  
Francyelle Ruana Faria da Silva ◽  
Ana Karina Dias Salman ◽  
Pedro Gomes da Cruz ◽  
Marlos Oliveira Porto ◽  
Jucilene Cavali ◽  
...  

To evaluate the bromatological composition and ruminal degradability of dry matter (DM), crude protein (CP), neutral detergent fiber (NDF) and acid detergent fiber (ADF) of Xaraés palisade grass (Urochloa brizantha ‘Xaraes’ syn Brachiaria brizantha) under grazing in integrated crop, livestock (ICL), and forest (ICLF) systems, we conducted an in situ degradability trial in randomized blocks with three non-lactating 3/4 Gyr × 1/4 Holstein cows, provided with ruminal cannula. The management of Xaraés palisade grass was similar in both systems, differing only regarding shading in the ICLF system provided by eucalyptus trees (average 65% crown cover). Grass samples were incubated for 0, 3, 6, 9, 12, 24, 36, 48, 72, and 96 hours. Considering the passage rate 2% h-1, the Xaraés palisade grass of ICL system had greater NDF effective degradability in relation to ICLF (46.38% vs 44.98%). However, the palisade grass CP potential degradability was greater in the ICLF than in the ICL system (68.92% vs. 65.40%). The presence of trees in the pasture has effect on nutritional traits of the Xaraés palisade grass, increasing its protein content and degradability and reducing its fiber degradability.


2013 ◽  
Vol 2013 ◽  
pp. 1-8 ◽  
Author(s):  
Oswaldo Rosendo ◽  
Luis Freitez ◽  
Rafael López

In in vitro true dry matter degradability (IVTDMD), in situ dry matter degradability, and neutral detergent fiber degradability, both in vitro (IVNDFD) and in situ (ISNDFD) techniques were used with crossbred goats to determine dry matter and neutral detergent fiber (NDF) ruminal degradability in eight forages and four industrial byproducts. Total digestible nutrients (TDN) content obtained with five different summative models (summative equations) were studied to compare the precision of estimates. All these models included digestible fractions of crude protein, ether extract, and nonfiber carbohydrates that were calculated from chemical composition, but digestible NDF (dNDF) was obtained from IVNDFD (IVdNDF), ISNDFD (ISdNDF), or by using the Surface Law approach. On the basis of the coefficient of determination (R2) of the simple lineal regression of predicted TDN (y-axes) and observed IVTDMD (x-axes), the precision of models was tested. The predicted TDN by the National Research Council model exclusively based on chemical composition only explains up to 41% of observed IVTDMD values, whereas the model based on IVdNDF had a high precision (96%) to predict TDN from forage and byproducts fiber when used in goats.


2007 ◽  
Vol 87 (4) ◽  
pp. 623-629 ◽  
Author(s):  
A. F. Mustafa ◽  
J. C. F. García ◽  
P. Seguin ◽  
O. Marois-Mainguy

A study was conducted to determine the effects of forage soybean cultivar on chemical composition, ensiling characteristics, and ruminal degradability of silage. Two cultivars of forage soybean (Kodiak and Mammouth) were field-grown, harvested at the R6 stage, and ensiled in mini-silos (n = 3) for 0, 2, 4, 8, 16 and 45 d. Two ruminally fistulated cows were used to determine in situ ruminal nutrient degradabilities of the 45-d silages. Both cultivars went through slow fermentation as indicated by a gradual decline in pH up to day 45 post-ensiling. Lactic acid concentration increased throughout ensiling and was higher for Mammouth than Kodiak except at day 45 post-ensiling. Analysis of the 45-d silages showed that Mammouth contained higher neutral detergent fiber (NDF, 490 vs. 444 g kg-1), acid detergent fiber (371 vs. 353 g kg-1) and acid detergent lignin (81 vs. 64 g kg-1) than Kodiak. However, crude protein (CP) concentration was higher for Kodiak than Mammouth. Mammouth silage had lower buffer soluble protein and higher neutral and acid detergent insoluble protein concentrations than Kodiak silage. Results of the in situ study indicated that Kodiak silage had greater ruminal dry matter (606 vs. 549 g kg-1), CP (828 vs. 752 g kg -1) and NDF (272 vs. 227 g kg-1) degradabilities than Mammouth. It was concluded that chemical composition and ruminal nutrient degradabilities of forage soybean silage were significantly influenced by cultivar. Key words: Soybean [Glycine max (L.) Merill.], silage, ensiling; forage quality, nutrient degradability


2019 ◽  
Vol 40 (6Supl3) ◽  
pp. 3565
Author(s):  
Milene Puntel Osmari ◽  
João Pedro Velho ◽  
Marjana Chantal Waechter ◽  
Rodrigo Rutz ◽  
Francilaine Eloise de Marchi ◽  
...  

Nitrogen fertilization can be used to increase production for area, as well as to improve the grains nutritional value. The aim of this study was to evaluate the chemical composition of two linseed cultivars (Brown and Golden) submitted to increasing doses of nitrogen fertilization in a completely randomized design. The Brown and Golden flax sowing was in April 2014, using 40 kg of viable seeds ha-1 and 100 kg ha-1 of diammonium phosphate (16-46-00) as fertilizer. It was evaluated the increasing doses of N fertilization in the cover: 0, 50, 100, 150 and 200 kg of N ha-1, applied in the urea form. For the fatty acids (FA) analysis, a composite sample of each variety was performed for the treatment 0 and 200 kg N ha-1. The composite samples were grounded in a multi-use mill with cooling jacket. The cooling was aimed to avoid the heating of the samples during their processing, in order to reduce the chances of FA profile alterations. The application of nitrogen positively influenced the production of grains and oil ha-1 of the cultivars, improved the Brown flax dry matter in vitro digestibility and the Golden flax neutral detergent fiber, ether extract and crude protein amounts. The cultivar Brown flax presented higher production of grains and oil ha-1 when compared to Golden flax, which presented lower neutral detergent fiber, crude protein, total carbohydrates and higher amounts of ether extract. The Golden flax was nutritionally healthier, as it presented higher proportions of C18:3 n3, unsaturated fatty acids, unsaturated/saturated fatty acids and hypocholesterolemic index. Both cultivars have potential ingredients to be used in animal feed, aiming to improve the quality of the final product.


2021 ◽  
Vol 37 ◽  
pp. e37001
Author(s):  
Rafael Henrique de Tonissi Buschinelli de Goes ◽  
Kennyson Alves de Souza ◽  
Milene Puntel Osmari ◽  
Thiago José de Lira Cardoso ◽  
Raquel Tenório de Oliveira ◽  
...  

This study was carried out to evaluate by-product of the biodiesel industry as canola, safflower, forage turnip, and soybean crushed on the chemical composition, in situ degradability, and colonization time. Canola (Brassica napus L. var. oleifera), safflower (Carthamus tinctorius L.), forage turnip (Raphanus stivus L. var. oleiferus Metzg), and soybean (Glycine max) grains went through the oil extraction process by means of a cold pressing, resulting in the oilseeds-crushed. The treatments identification included: CAN – Canola crushed; SAF – Safflower crushed; TUR – Forage turnip crushed; and SOY – Soybean crushed. The oilseed-crushed treatments were quantified about mineral (calcium, magnesium, copper, iron, manganese, zinc, phosphorus and potassium), chemical composition (dry matter, ash, organic matter, crude protein, ether extract, neutral detergent fiber, acid detergent fiber, total carbohydrates, non-fibrous carbohydrates, and total digestible nutrient contents), In situ degradability, and colonization time. Magnesium, phosphorus, and zinc showed the greater values for TUR treatment 3.46, 27.4, 39.8, respectively, when compared to the other oilseed-crushed treatments. The TUR treatment had the lowest organic matter, whereas had the greater (p≤0.05; TUR and SOY treatments) for the non-fibrous carbohydrates. Ether extract was not affected (p>0.05) with the different oilseed-crushed treatments. Neutral detergent fiber was affected (p≤0.05) for CAN and SAF treatments with the greater values, 344 and 500 g/kg of dry matter, respectively. Soluble and potentially degradable fractions for SAF treatment showed similar results. Whereas the constant rate of degradation, presented the lowest value when compared to the other treatments. Effective degradability of crude protein was greater for CAN 63.2% than SOY 65.9% treatment, which had the lowest value. Potential degradability of crude protein did not differ between treatments. Colonization time for dry matter and crude protein were similar between TUR and SOY treatments. In conclusion, oilseeds-crushed from the biodiesel production can be targeted/used, as feed with great protein and energetic potential in the ruminant’s production, considering the need of correct formulation and ingredients knowledge.


2019 ◽  
Vol 16 (2) ◽  
pp. 79-92
Author(s):  
Kirenia Pérez-Corría ◽  
Aroldo Botello-León ◽  
Abril Karina Mauro-Félix ◽  
Franklin Rivera-Pineda ◽  
María Teresa Viana ◽  
...  

To evaluate the chemical composition of the earthworm (Eisenia foetida) co-dried (EW) with vegetable meals (VM) as animal feed ingredient, the blends were mixed with wheat bran (WB), rice powder (RP), corn meal (CM) and soy cake meal (SCM) in proportions of 85:15; 75:25 and 65:35. The dry matter (DM), crude protein (CP), crude fat (CFA), crude fiber (CF), ashes and nitrogen-free extract (NFE) of the ingredients and final mixtures were determined. All the mixtures resulted with a high content of DM (≥90.00 %). No significant differences among the proportions were revealed (P>0.05). In addition, the higher inclusion of the earthworm in the proportions (85:15) increased (P<0.05) the CP (54.70 %), CFA (7.28 %), and ashes (10.20 %), mainly when mixed with SCM, CM, and RP, respectively. However, the use of vegetable meals proportionally increased the CF (7.31 %), and NFE (52.62 %), mainly with the proportion of 65:35 and with RP and CM, respectively (P<0.05). The results showed that the vegetable meals (WB, RP, CM, and SCM) are useful to co-dry the earthworm to be use for animal feed. It is concluded that the most appropriate proportion (VM:EW) will depend on the animal species, productive stage and market requirement.


2014 ◽  
Vol 4 (1) ◽  
pp. 22-28
Author(s):  
T. N. Mandal ◽  
T. P. Gautam

Altogether 19 fodder climbers were collected with local information for their quality, feeding season and preference by livestock from Sunsari district, Nepal. Fodder climbers were distributed under 15 angiospermic families. Among them, 6 climber species were analyzed for dry matter, crude protein, ether extract, crude fibre, N-free extract, total ash and mineral contents (K, Ca, and P). Dry matter content ranged from 24.12 to 45.43%. Crude protein content showed slight variation. Ether extract ranged from 2.13- 4.23%, while Crude fiber content ranged between 18.62 and 22.52%. N-free extract showed narrow variation in the content while Total ash content exhibited a wide variation ranging from 5.67 to 11.52%. Among the minerals, Phosphorus showed distinct variation in the content from 0.19 to 0.46%. Fodder quality assessed by local people was compared with the result of chemical composition. On the basis of local information and chemical composition, Hedera nepalensis and Hedyotis scandens were considered as very good fodder climbers.


2017 ◽  
Vol 38 (4Supl1) ◽  
pp. 2691
Author(s):  
Yasmin Haluan Porto Moura ◽  
Carmen Lucia De Souza Rech ◽  
Mauro Pereira de Figueiredo ◽  
José Luiz Rech ◽  
Yann Dos Santos Luz ◽  
...  

The agricultural activity has generated a progressive amount of waste, which needs a proper treatment to avoid negative environmental impacts. At the same time, values can be added to such waste, as its use in animal feed. This research was conducted at the laboratory of Animal Nutrition, State University of Southwestern Bahia, campuses of Vitória da Conquista and Itapetinga. The objective of this study was to evaluate the effect of coffee husks on ruminant feeds by increasing doses of fibrolytic enzymes, evaluating their effects on in vitro ruminal degradability of dry matter (DM), neutral detergent fiber (NDF), and acid detergent fiber (FDA) of the coffee husk (CH). The experiment was a completely randomized design in a 2x4 factorial scheme. It compounded the following treatments: Coffee husk (CH1): 1.5% enzymes (E) and 24 h enzymatic action (EA); CH2: 3.0% (E) and 24h (EA); CH3: 4.5% (E) and 24 h (EA); CH4: 6% (E) and 24 h (EA); CH5: 1.5% (E) 48 h (EA); CH6: 3% (E) and 48h (EA); CH7: 4.5% (E) and 48h (EA); and CH8: 6% (E) and 48 h (EA), all based on dry matter. An improvement in the degradability of the nutritional parameters MS, NDF, and FDA occurred with the addition of enzymes, with 3% enzyme addition being the best level, and 24 hours, as the best action time. In addition to that, as the EA on coffee husk increased, the degradation rate decreased. Therefore, the use of enzymes can improve the digestibility of the fibrous fraction, enabling the use of the coffee husk and possibly other agroindustrial residues, thus minimizing their adverse effects on nature.


1993 ◽  
Vol 73 (2) ◽  
pp. 411-419 ◽  
Author(s):  
Bruno J. Marty ◽  
Eduardo R. Chavez

The influence of different heat treatments for full-fat soybeans (FFSB) on digestible energy (DE) values and fecal nutrient digestibilities was studied using 180 castrated male Landrace pigs at three different growth stages: weaner (17.1 ± 0.2 kg), grower (32 ± 0.2 kg) and finisher (61.6 ± 0.3 kg). The soybean products used in weaner (30%), grower (25%) and finisher (20%) diets were soybean meal (SBM) or FFSB processed by either extrusion (Ex), jet sploding (Js), micronization (Mi) or roasting (Ro). Digestibilities were determined by total fecal collections during the last 7 d of each 12-d period. Dry matter (DM) and neutral detergent fiber (NDF) digestibilities of FFSB were lower (P < 0.05) in weaner than in grower or finisher pigs, but DE values and apparent digestibilities of crude protein (CP) and ether extract were not influenced by growth stage. Extruded FFSB had a superior CP digestibility than the other soybean products (86.4 vs. 79.8, 79.8, 80.0 and 78.2% for Js, Mi, Ro and SBM, respectively), and it also had a higher DE value (21.0 vs. 20.0, 19.6, 18.5 and 16.6 MJ DE kg−1 DM, P < 0.05). Extrusion of FFSB was most beneficial for weaner pigs as this heat treatment resulted in higher (P < 0.05) CP (87.8 vs. 80.9, 80.8, 82.1 and 76.6% for Js, Mi, Ro and SBM, respectively) and NDF (76.2 vs. 62.7, 63.3, 61.9 and 53.8% for Js, Mi, Ro and SBM, respectively) digestibilities. The heat treatments did not influence the CP and NDF digestibilities during grower or finisher stages. The data suggested that extrusion of FFSB yielded superior DE values and CP digestibilities than other heat treatments. Key words: Full-fat soybean products, extrusion, digestibility, pigs


Sign in / Sign up

Export Citation Format

Share Document