scholarly journals Elicitor-Induced Defense Responses inSolanum lycopersicumagainstRalstonia solanacearum

2013 ◽  
Vol 2013 ◽  
pp. 1-9 ◽  
Author(s):  
Sudhamoy Mandal ◽  
Itishree Kar ◽  
Arup K. Mukherjee ◽  
Priyambada Acharya

We investigated on important parameters of induced resistance in hydroponic tomato (Solanum lycopersicum) againstRalstonia solanacearumusing the elicitors chitosan (CHT), salicylic acid (SA), and jasmonic acid (JA). The increase in total phenolic content of roots by the elicitors was significantly higher than control. Most pronounced increase in lignin synthesis was triggered by SA followed by CHT. At 24 h post-elicitation (hpe), the activity of phenylalanine ammonia lyase was 4.5 times higher than control elicited by CHT. The peroxidase activity was about 86 nkat/mg protein at 24 hpe in case of SA and 78 nkat/mg protein in case of CHT. The activity of polyphenol oxidase increased several folds by the elicitors. Cinnamyl alcohol dehydrogenase activity increased to the maximum at 48 hpe under the influence of CHT. The results indicate that the elicitors SA and CHT induced effective defense responses in tomato plants againstR. solanacearum. This was evident from reduced vascular browning and wilting symptoms of tomato plants treated with SA and CHT and challenged subsequently withR. solanacearum. This reduced disease incidence in tomato by SA and CHT may be a result of cell wall strengthening through deposition of lignin and the coincident induction of defense enzymes.

2007 ◽  
Vol 20 (12) ◽  
pp. 1477-1488 ◽  
Author(s):  
Saeed Irian ◽  
Ping Xu ◽  
Xinbin Dai ◽  
Patrick X. Zhao ◽  
Marilyn J. Roossinck

Infection of Cucumber mosaic virus (CMV) and D satellite RNA (satRNA) in tomato plants induces rapid plant death, which has caused catastrophic crop losses. We conducted long serial analysis of gene expression (LongSAGE) in control and virus-infected plants to identify the genes that may be involved in the development of this lethal tomato disease. The transcriptomes were compared between mock-inoculated plants and plants infected with CMV, CMV/D satRNA, or CMV/Dm satRNA (a nonnecrogenic mutant of D satRNA with three mutated nucleotides). The analysis revealed both general and specific changes in the tomato transcriptome after infection with these viruses. A massive transcriptional difference of approximately 400 genes was found between the transcriptomes of CMV/D and CMV/Dm satRNA-infected plants. Particularly, the Long-SAGE data indicated the activation of ethylene synthesis and signaling by CMV/D satRNA infection. Results from inoculation tests with an ethylene-insensitive mutant and treatments with an ethylene action inhibitor further confirmed the role of ethylene in mediating the epinastic leaf symptoms and the secondary cell death in the stem. Results from Northern blot analysis demonstrated the partial contribution of ethylene in the induced defense responses in CMV/D satRNA-infected plants.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
P. Lakshmi Soujanya ◽  
J. C. Sekhar ◽  
C. V. Ratnavathi ◽  
Chikkappa G. Karjagi ◽  
E. Shobha ◽  
...  

AbstractPink stem borer (PSB) causes considerable yield losses to maize. Plant–insect interactions have significant implications for sustainable pest management. The present study demonstrated that PSB feeding, mechanical wounding, a combination of mechanical wounding and PSB regurgitation and exogenous application of methyl jasmonate have induced phenolic compound mediated defense responses both at short term (within 2 days of treatment) and long term (in 15 days of treatment) in leaf and stalk tissues of maize. The quantification of two major defense related phenolic compounds namely p-Coumaric acid (p-CA) and ferulic acid (FA) was carried out through ultra-fast liquid chromatography (UFLC) at 2 and 15 days after imposing the above treatments. The p-CA content induced in leaf tissues of maize genotypes were intrinsically higher when challenged by PSB attack at V3 and V6 stages in short- and long-term responses. Higher p-CA content was observed in stalk tissues upon wounding and regurgitation in short- and long-term responses at V3 and V6 stages. Significant accumulation of FA content was also observed in leaf tissues in response to PSB feeding at V3 stage in long-term response while at V6 stage it was observed both in short- and long-term responses. In stalk tissues, methyl jasmonate induced higher FA content in short-term response at V3 stage. However, at V6 stage PSB feeding induced FA accumulation in the short-term while, wounding and regurgitation treatment-induced defense responses in the long-term. In general, the resistant (DMRE 63, CM 500) and moderately resistant genotypes (WNZ ExoticPool) accumulated significantly higher contents of p-CA and FA content than susceptible ones (CM 202, BML 6) in most of the cases. The study indicates that phenolic mediated defense responses in maize are induced by PSB attack followed by wounding and regurgitation compared to the other induced treatments. Furthermore, the study confirmed that induced defense responses vary with plant genotype, stage of crop growth, plant tissue and short and long-term responses. The results of the study suggested that the Phenolic acids i.e. p-CA and FA may contribute to maize resistance mechanisms in the maize-PSB interaction system.


2004 ◽  
Vol 85 (1) ◽  
pp. 33-37 ◽  
Author(s):  
Magali Merkx-Jacques ◽  
Jacqueline C. Bede

Abstract Plants exhibit remarkable plasticity in their ability to differentiate between herbivorous insect species and subtly adjust their defense responses to target distinct pests. One key mechanism used by plants to recognize herbivorous caterpillars is elicitors present in their oral secretions; however, these elicitors not only cause the induction of plant defenses but recent evidence suggests that they may also suppress plant responses. The absence of “expected changes” in induced defense responses of insect-infested plants has been attributed to hydrogen peroxide produced by caterpillar salivary glucose oxidase (GOX). Activity of this enzyme is variable among caterpillar species; it was detected in two generalist caterpillars, the beet armyworm (Spodoptera exigua) and the bertha armyworm (Mamestra configurata), but not in other generalist or specialist caterpillar species tested. In the beet armyworm, GOX activity fluctuated over larval development with high activity associated with the salivary glands of fourth instars. Larval salivary GOX activity of the beet armyworm and the bertha armyworm was observed to be significantly higher in caterpillars reared on artificial diet as compared with those reared on Medicago truncatula plants. This implies that a factor in the diet is involved in the regulation of caterpillar salivary enzyme activity. Therefore, plant diet may be regulating caterpillar oral elicitors that are involved in the regulation of plant defense responses: our goal is to understand these two processes.


2012 ◽  
Vol 36 (4) ◽  
pp. 383-390 ◽  
Author(s):  
Ricardo Borges Pereira ◽  
Gilvaine Ciavareli Lucas ◽  
Fabiano José Perina ◽  
Pedro Martins Ribeiro Júnior ◽  
Eduardo Alves

The rust and brown eye spot are the main coffee diseases. The losses are due to intense defoliation of plants, which has reduced its production and longevity. The brown eye spot also occurs in fruits, with negative effects on the beverage quality. Some essential oils have presented promising results in the control of plant diseases, as an alternative to the use of fungicides. The objective of this study was to evaluate citronella essential oil in the control of rust and brown eye spot and in the activation of coffee plants defense responses. Twelve-month-old plants were sprayed with citronella oil 1000 µL L-1, acibenzolar-S-methyl 200 mg L-1 and tebuconazole fungicide 200 mg L-1. Plants were inoculated with Hemileia vastatrix and Cercospora coffeicola seven days later. The application was repeated after 30 days. Plants with five months were sprayed with the same treatments to assess the induced defense responses. Citronella oil controlled rust and brown eye spot with efficiencies of 47.2% and 29.7%, respectively, while tebuconazole presented control of 96.5% and 90.5%, respectively. Acibenzolar-S-methyl reduced brown eye spot by 55.9% and showed no significant control of rust. Citronella oil increased peroxidase and chitinase activities in five months coffee plants 336, and 24 and 336 hours after spraying, respectively. Acibenzolar-S-methyl increased peroxidase, chitinase and ββ-1,3-glucanase activities 192, 288 and 336; 24 and; 240 hours after spraying, respectively. The treatments did not increase accumulation of phenols, but a significant increase in lignin was observed in plants sprayed with citronella oil.


FEBS Letters ◽  
2004 ◽  
Vol 571 (1-3) ◽  
pp. 31-34 ◽  
Author(s):  
Shin-ichi Ito ◽  
Tomomi Eto ◽  
Shuhei Tanaka ◽  
Naoki Yamauchi ◽  
Hiroyuki Takahara ◽  
...  

2011 ◽  
Vol 101 (6) ◽  
pp. 741-749 ◽  
Author(s):  
Yi-Hsien Lin ◽  
Hsiang-En Huang ◽  
Yen-Ru Chen ◽  
Pei-Luan Liao ◽  
Ching-Lian Chen ◽  
...  

Protein phosphorylation is an important biological process associated with elicitor-induced defense responses in plants. In a previous report, we described how plant ferredoxin-like protein (PFLP) in transgenic plants enhances resistance to bacterial pathogens associated with the hypersensitive response (HR). PFLP possesses a putative casein kinase II phosphorylation (CK2P) site at the C-terminal in which phosphorylation occurs rapidly during defense response. However, the contribution of this site to the enhancement of disease resistance and the intensity of HR has not been clearly demonstrated. In this study, we generated two versions of truncated PFLP, PEC (extant CK2P site) and PDC (deleted CK2P site), and assessed their ability to trigger HR through harpin (HrpZ) derived from Pseudomonas syringae as well as their resistance to Ralstonia solanacearum. In an infiltration assay of HrpZ, PEC intensified harpin-mediated HR; however, PDC negated this effect. Transgenic plants expressing these versions indicate that nonphosphorylated PFLP loses its ability to induce HR or enhance disease resistance against R. solanacearum. Interestingly, the CK2P site of PFLP is required to induce the expression of the NADPH oxidase gene, AtrbohD, which is a reactive oxygen species producing enzyme. This was further confirmed by evaluating the HR on NADPH oxidase in mutants of Arabidopsis. As a result, we have concluded that the CK2P site is required for the phosphorylation of PFLP to enhance disease resistance.


2012 ◽  
Vol 25 (4) ◽  
pp. 1215-1223 ◽  
Author(s):  
Shasha Wang ◽  
Fengyang Zhao ◽  
Xiaojiao Wei ◽  
Bojun Lu ◽  
Delin Duan ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document