scholarly journals Pore Structure and Limit Pressure of Gas Slippage Effect in Tight Sandstone

2013 ◽  
Vol 2013 ◽  
pp. 1-7 ◽  
Author(s):  
Lijun You ◽  
Kunlin Xue ◽  
Yili Kang ◽  
Yi Liao ◽  
Lie Kong

Gas slip effect is an important mechanism that the gas flow is different from liquid flow in porous media. It is generally considered that the lower the permeability in porous media is, the more severe slip effect of gas flow will be. We design and then carry out experiments with the increase of backpressure at the outlet of the core samples based on the definition of gas slip effect and in view of different levels of permeability of tight sandstone reservoir. This study inspects a limit pressure of the gas slip effect in tight sandstones and analyzes the characteristic parameter of capillary pressure curves. The experimental results indicate that gas slip effect can be eliminated when the backpressure reaches a limit pressure. When the backpressure exceeds the limit pressure, the measured gas permeability is a relatively stable value whose range is less than 3% for a given core sample. It is also found that the limit pressure increases with the decreasing in permeability and has close relation with pore structure of the core samples. The results have an important influence on correlation study on gas flow in porous medium, and are beneficial to reduce the workload of laboratory experiment.

Geofluids ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Liangbin Dou ◽  
Guanli Shu ◽  
Hui Gao ◽  
Jinqing Bao ◽  
Rui Wang

The investigation of changes in physical properties, mechanical properties, and microscopic pore structure characteristics of tight sandstone after high-temperature heat treatment provides a theoretical basis for plugging removal and stimulation techniques, such as high energy gas fracturing and explosive fracturing. In this study, core samples, taken from tight sandstone reservoirs of the Yanchang Formation in the Ordos Basin, were first heated to different temperatures (25-800°C) and then cooled separately by two distinct cooling methods—synthetic formation water cooling and natural cooling. The variations of wave velocity, permeability, tensile strength, uniaxial compressive strength, and microscopic pore structure of the core samples were analyzed. Experimental results demonstrate that, with the rise of heat treatment temperature, the wave velocity and tensile strength of tight sandstone decrease nonlinearly, yet its permeability increases nonlinearly. The tight sandstone’s peak strength and elastic modulus exhibit a trend of the first climbing and then declining sharply with increasing temperature. After being treated by heat at different temperatures, the number of small pores varies little, but the number of large pores increases obviously. Compared to natural cooling, the values of physical and mechanical properties of core samples treated by synthetic formation water cooling are apparently smaller, whereas the size and number of pores are greater. It can be explained that water cooling brings about a dramatic reduction of tight sandstone’s surface temperature, generating additional thermal stress and intensifying internal damage to the core. For different cooling methods, the higher the core temperature before cooling, the greater the thermal stress and the degree of damage caused during the cooling process. By taking into consideration of changes in physical properties, mechanical properties, and microscopic pore structure characteristics, the threshold temperature of tight sandstone is estimated in the range of 400-600°C.


2012 ◽  
Vol 710 ◽  
pp. 641-658 ◽  
Author(s):  
Hamed Darabi ◽  
A. Ettehad ◽  
F. Javadpour ◽  
K. Sepehrnoori

AbstractWe study the gas flow processes in ultra-tight porous media in which the matrix pore network is composed of nanometre- to micrometre-size pores. We formulate a pressure-dependent permeability function, referred to as the apparent permeability function (APF), assuming that Knudsen diffusion and slip flow (the Klinkenberg effect) are the main contributors to the overall flow in porous media. The APF predicts that in nanometre-size pores, gas permeability values are as much as 10 times greater than results obtained by continuum hydrodynamics predictions, and with increasing pore size (i.e. of the order of the micrometre), gas permeability converges to continuum hydrodynamics values. In addition, the APF predicts that an increase in the fractal dimension of the pore surface leads to a decrease in Knudsen diffusion. Using the homogenization method, a rigorous analysis is performed to examine whether the APF is preserved throughout the process of upscaling from local scale to large scale. We use the well-known pulse-decay experiment to estimate the main parameter of the APF, which is Darcy permeability. Our newly derived late-transient analytical solution and the late-transient numerical solution consistently match the pressure decay data and yield approximately the same estimated value for Darcy permeability at the typical core-sample initial pressure range and pressure difference. Other parameters of the APF may be determined from independent laboratory experiments; however, a pulse-decay experiment can be used to estimate the unknown parameters of the APF if multiple tests are performed and/or the parameters are strictly constrained by upper and lower bounds.


1970 ◽  
Vol 10 (01) ◽  
pp. 51-55 ◽  
Author(s):  
Robert A. Albrecht ◽  
Sullivan S. Marsden

Abstract Although foam usually will flow in porous media, under certain controllable conditions it can also be used to block the flow of gas, both in unconsolidated sand packs and in sandstones. After steady gas or foam flow has been established at a certain injection pressure pi, the pressure is decreased until flow pressure pi, the pressure is decreased until flow ceases at a certain blocking pressure pb. When flow is then reestablished at a second, higher pi, blocking can again occur at another pb that will usually be greater than the first pi. The relationship between pi and Pb depends on the type of porous medium and the foamer solution saturation in the porous medium. A process is suggested whereby porous medium. A process is suggested whereby this phenomenon might be used to impede or block leakage in natural gas storage projects. Introduction The practice of storing natural gas in underground porous rocks has developed rapidly, and it now is porous rocks has developed rapidly, and it now is the major way of meeting peak demands in urban areas of the U. S. Many of these storage projects have been plagued with gas leakage problems that have, in some cases, presented safety hazards and resulted in sizeable economic losses. Usually these leaks are due to such natural factors as faults and fractures, or to such engineering factors as poor cement jobs and wells that were improperly abandoned. For the latter, various remedies such as spot cementing have been tried but not always with great success. In recent years several research groups have been studying the flow properties of aqueous foams and their application to various petroleum engineering problems. Most of this work has been done under problems. Most of this work has been done under experimental conditions such that the foam would flow in either tubes or porous media. However, under some extreme or unusual experimental conditions, flow in porous media becomes very difficult or even impossible. This factor also has suggested m us as well as to others that foam can be used as a gas flow impeder or as a sealant for leaks in gas storage reservoirs. In such a process, the natural ability of porous media to process, the natural ability of porous media to generate foam would be utilized by injecting a slug of foamer solution and following this with gas to form the foam in situ. This paper presents preliminary results of a sandy on the blockage of gas flow by foam in porous media. It also describes how this approach might be applied to a field process for sealing leaks in natural gas storage reservoirs. Throughout this report, we use the term "foam" to describe any dispersed gas-liquid system in which the liquid is the continuous phase, and the gas is the discontinuous phase. APPARATUS AND PROCEDURE A schematic drawing of the apparatus is shown in Fig. 1. At least 50 PV of filtered, deaerated foamer solution were forced through the porous medium to achieve liquid saturation greater than 80 percent. Afterwards air at controlled pressures was passed into the porous medium in order to generate foam in situ. Table 1 shows the properties and dimensions of the several porous media that were used. The beach sands were washed, graded and packed into a vibrating lucite tube containing a constant liquid level to avoid Stoke's law segregation over most of the porous medium. JPT P. 51


1985 ◽  
Vol 20 (1) ◽  
pp. 161-164
Author(s):  
Yu. N. Gordeev ◽  
V. M. Kolobashkin ◽  
N. A. Kudryashov

2011 ◽  
Vol 2011 (0) ◽  
pp. _J054022-1-_J054022-5
Author(s):  
Ko TOMARIKAWA ◽  
Tomoya OSHIMA ◽  
Shigeru YONEMURA ◽  
Takashi TOKUMASU

SPE Journal ◽  
2015 ◽  
Vol 20 (06) ◽  
pp. 1238-1253 ◽  
Author(s):  
A.S.. S. Zakaria ◽  
H.A.. A. Nasr-El-Din ◽  
M.. Ziauddin

Summary Carbonate formations are very complex in their pore structure and exhibit a wide variety of pore classes, such as interparticle porosity, moldic porosity, vuggy porosity, and microporosity. Geologists have defined carbonate pore classes on the basis of sedimentology, thin sections, and porosity/permeability relationships, but the question remains concerning how these pore classes govern the acid flow through porous media. Core samples from six different carbonates, mainly limestone, were selected for the study. The samples were first investigated with thin-section analysis, high-pressure mercury-injection tests, and nuclear-magnetic-resonance measurements for pore-structure characterization, and X-ray diffraction for mineralogy examination. Next, tracer experiments were conducted, and the tracer-concentration profiles were analyzed to quantify the carbonate pore-scale heterogeneity. The heterogeneity is expressed with a parameter f—the available fraction of pore structure contributing to the flow. The data were used to study the flow of acid through carbonate rocks and correlate the pore classes to the acid response. More than 30 acid-coreflood experiments were conducted at 150°F and a hydrochloric acid concentration of 15 wt% on 1.5 × 6-in. core samples at different injection rates on each carbonate rock type. The objective of these sets of experiments is to determine the acid pore volume to breakthrough for each carbonate pore class. The findings of this study help us to connect the results from different characterization methods to the acid flow through the porous media of carbonate rocks. It was also found that the response of the acid depends on the carbonate pore classes. Application to the design of matrix acid treatments in carbonate rocks is discussed.


Sign in / Sign up

Export Citation Format

Share Document