scholarly journals Biochemical Characterization and Pharmacological Properties of New Basic PLA2BrTX-I Isolated fromBothrops roedingeri(Roedinger's Lancehead) Mertens, 1942, Snake Venom

2013 ◽  
Vol 2013 ◽  
pp. 1-13 ◽  
Author(s):  
Mauricio Aurelio Gomes Heleno ◽  
Paulo Aparecido Baldasso ◽  
Luis Alberto Ponce-Soto ◽  
Sérgio Marangoni

BrTX-I, a PLA2, was purified fromBothrops roedingerivenom after only one chromatographic step using reverse-phase HPLC onμ-Bondapak C-18 column. A molecular mass of 14358.69 Da was determined by MALDI-TOF mass spectrometry. Amino acid analysis showed a high content of hydrophobic and basic amino acids as well as 14 half-cysteine residues. The total amino acid sequence was obtained using SwissProt database and showed high amino acid sequence identity with other PLA2from snake venom. The amino acid composition showed that BrTX-I has a high content of Lys, Tyr, Gly, Pro, and 14 half-Cys residues, typical of a basic PLA2. BrTX-I presented PLA2activity and showed a minimum sigmoidal behavior, reaching its maximal activity at pH 8.0, 35–45°C, and required Ca2+.In vitro, the whole venom and BrTX-I caused a neuromuscular blockade in biventer cervicis preparations in a similar way to otherBothropsspecies. BrTX-I induced myonecrosis and oedema-forming activity analyzed through injection of the purified BrTX-I in mice. Since BrTX-I exerts a strong proinflammatory effect, the enzymatic phospholipid hydrolysis might be relevant for these phenomena; incrementing levels of IL-1, IL-6, and TNFαwere observed at 15 min, 30 min, one, two, and six hours postinjection, respectively.

1998 ◽  
Vol 66 (10) ◽  
pp. 4804-4810 ◽  
Author(s):  
Peter F. Mühlradt ◽  
Michael Kiess ◽  
Holger Meyer ◽  
Roderich Süssmuth ◽  
Günther Jung

ABSTRACT Mycoplasmas are potent macrophage stimulators. We describe the isolation of macrophage-stimulatory lipopeptidesS-[2,3-bisacyl(C16:0/C18:0)oxypropyl]cysteinyl-GQTDNNSSQSQQPGSGTTNT andS-[2,3-bisacyl(C16:0/C18:0)oxypropyl]cysteinyl-GQTN derived from the Mycoplasma hyorhinis variable lipoproteins VlpA and VlpC, respectively. These lipopeptides were characterized by amino acid sequence and composition analysis and by mass spectrometry. The lipopeptidesS-[2,3-bis(palmitoyloxy)propyl]cysteinyl-GQTNT andS-[2,3-bis(palmitoyloxy)propyl]cysteinyl-SKKKK and the N-palmitoylated derivative of the latter were synthesized, and their macrophage-stimulatory activities were compared in a nitric oxide release assay with peritoneal macrophages from C3H/HeJ mice. The lipopeptides with the free amino terminus showed half-maximal activity at 3 pM regardless of their amino acid sequence; i.e., they were as active as the previously isolated M. fermentans-derived lipopeptide MALP-2. The macrophage-stimulatory activity of the additionally N-palmitoylated lipopeptide or of the murein lipoprotein from Escherichia coli, however, was lower by orders of magnitude. It is concluded that the lack of N-acyl groups in mycoplasmal lipoproteins explains their exceptionally high in vitro macrophage-stimulatory capacity. Certain features that lipopolysaccharide endotoxin and mycoplasmal lipopeptides have in common are discussed. Lipoproteins and lipopeptides are likely to be the main causative agents of inflammatory reactions to mycoplasmas. This may be relevant in the context of mycoplasmas as arthritogenic pathogens and their association with AIDS.


2001 ◽  
Vol 183 (6) ◽  
pp. 1954-1960 ◽  
Author(s):  
Grit Zarnt ◽  
Thomas Schräder ◽  
Jan R. Andreesen

ABSTRACT The quinohemoprotein tetrahydrofurfuryl alcohol dehydrogenase (THFA-DH) from Ralstonia eutropha strain Bo was investigated for its catalytic properties. The apparentk cat/Km andK i values for several substrates were determined using ferricyanide as an artificial electron acceptor. The highest catalytic efficiency was obtained with n-pentanol exhibiting a k cat/Km value of 788 × 104 M−1 s−1. The enzyme showed substrate inhibition kinetics for most of the alcohols and aldehydes investigated. A stereoselective oxidation of chiral alcohols with a varying enantiomeric preference was observed. Initial rate studies using ethanol and acetaldehyde as substrates revealed that a ping-pong mechanism can be assumed for in vitro catalysis of THFA-DH. The gene encoding THFA-DH from R. eutropha strain Bo (tfaA) has been cloned and sequenced. The derived amino acid sequence showed an identity of up to 67% to the sequence of various quinoprotein and quinohemoprotein dehydrogenases. A comparison of the deduced sequence with the N-terminal amino acid sequence previously determined by Edman degradation analysis suggested the presence of a signal sequence of 27 residues. The primary structure of TfaA indicated that the protein has a tertiary structure quite similar to those of other quinoprotein dehydrogenases.


Biologia ◽  
2011 ◽  
Vol 66 (1) ◽  
Author(s):  
Dessy Natalia ◽  
Keni Vidilaseris ◽  
Pasjan Satrimafitrah ◽  
Wangsa Ismaya ◽  
Purkan ◽  
...  

AbstractGlucoamylase from the yeast Saccharomycopsis fibuligera R64 (GLL1) has successfully been purified and characterized. The molecular mass of the enzyme was 56,583 Da as determined by mass spectrometry. The purified enzyme demonstrated optimum activity in the pH range of 5.6–6.4 and at 50°C. The activity of the enzyme was inhibited by acarbose with the IC50 value of 5 μM. GLL1 shares high amino acid sequence identity with GLU1 and GLA1, which are Saccharomycopsis fibuligera glucoamylases from the strains HUT7212 and KZ, respectively. The properties of GLL1, however, resemble that of GLU1. The elucidation of the primary structure of GLL1 contributes to the explanation of this finding.


Development ◽  
2000 ◽  
Vol 127 (9) ◽  
pp. 1879-1886 ◽  
Author(s):  
M. Seimiya ◽  
W.J. Gehring

optix is a new member of the Six/so gene family from Drosophila that contains both a six domain and a homeodomain. Because of its high amino acid sequence similarity with the mouse Six3 gene, optix is considered to be the orthologous gene from Drosophila rather than sine oculis, as previously believed. optix expression was detected in the eye, wing and haltere imaginal discs. Ectopic expression of optix leads to the formation of ectopic eyes suggesting that optix has important functions in eye development. Although optix and sine oculis belong to the same gene family (Six/so) and share a high degree of amino acid sequence identity, there are a number of factors which suggest that their developmental roles are different: (1) the expression patterns of optix and sine oculis are clearly distinct; (2) sine oculis acts downstream of eyeless, whereas optix is expressed independently of eyeless; (3) sine oculis functions synergistically with eyes absent in eye development whereas optix does not; (4) ectopic expression of optix alone, but not of sine oculis can induce ectopic eyes in the antennal disc. These results suggest that optix is involved in eye morphogenesis by an eyeless-independent mechanism.


2020 ◽  
Author(s):  
Qingxiu Zhang ◽  
Lei He ◽  
Mo Chen ◽  
Hui Yang ◽  
Xiaowei Cao ◽  
...  

Abstract Background: Our previous experiments demonstrated that PSD-93 mediates glutamate excitotoxicity induced by ischemic brain injury, which promotes the release of inflammatory cytokines in early ischemic brain injury by activating the NMDA receptor. Glutamate activity is the key to neuronal excitatory toxicity and microglial cell inflammatory response in the joints. However, the underlying mechanisms of how does PSD-93 mediate the dialogue between neurons and microglia in the postsynaptic dense region remain elusive. And CX3 chemokine ligand 1 (CX3CL1) is a chemokine that is specifically expressed in neurons. Its only receptor CX3CR1 is highly expressed in microglia and its main forms are membrane binding and soluble. In this study, we aim to clarify the specific amino acid sequence of the binding of psd-93 and CX3CL1 and investigate role of PSD-93 on regulating the crosstalk between neuron and microglia in acute ischemic stroke. Methods: In this study, male C57BL/6 mice aged 8-12 weeks and weighted 22-26g were applied with Middle Cerebral Artery Occlusion (MCAO) model and randomly divided into different groups. Firstly, co-immunoprecipitation and immunoblotting were used to detect the binding of PSD-93 and CX3CL1 at different time points 3h, 6h, 12h 24h, 48h and 72h following cerebral ischemic/reperfusion. Meanwhile, ELISA was used to investigate the expression of soluble CX3CL1 at the same time points to confirm the relationship between of the expression of soluble CX3CL1 and the combination of PSD-93 and CX3CL1. Secondly, two bait plasmids pSos-PSD-93-full length, pSos-CX3CL1-full length and five mutant plasmids: pMyr-PSD-93-mut1, pMyr-PSD-93-mut2, pMyr-PSD-93-mut3, pMyr-PSD-93-mut4, and pMyr-CX3CL1-mut, were constructed and used a yeast two-hybrid system to screen and identify positive clones and to determine the sequence in which the two proteins bind to each other. Thirdly, the proteins corresponding to the three positive clones obtained in the yeast two-hybrid experiment were used to construct plasmids for transfection of eukaryotic cells and the protein expression binding was verified again by in vitro co-immunoprecipitation. Finally, a specific fusion small peptide Tat-CX3CL1 were designed according to above experiment to inhibit the integration of PSD-93 and CX3CL1 and to explore their role on neuron death following reperfusion. Results: We found that the binding capacity of PSD-93 and CX3CL1 proteins peaked at 6h after ischemia/reperfusion and then decreased gradually. The specific amino acid sequence of PSD-93 and CX3CL1 binding was obtained by yeast double hybridization and in vitro immunoprecipitation. We identified that their binding sites are located in the 420-535 amino acid sequence of PSD-93 and 357-395 amino acid sequence of CX3CL1. And a specific fusion small peptide Tat-CX3CL1 (357-395aa) were designed to inhibit the integration of PSD-93 and CX3CL1 and perform neuroprotection on neuron death following reperfusion. Conclusions: Our results suggest that PSD-93 promotes the formation of its soluble form by binding to CX3CL1, which is recruited to the surface of microglia to bind to CX3CR1, thereby activating microglia to initiate inflammation. Thus, specific blockade of PSD-93-CX3CL1 coupling can reduce ischemia-reperfusion induced neuronal cell death, which provide a new target to treat ischemic stroke.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Mekdes Megeressa ◽  
Bushra Siraj ◽  
Shamshad Zarina ◽  
Aftab Ahmed

AbstractNon-specific lipid transfer proteins (nsLTPs) are cationic proteins involved in intracellular lipid shuttling in growth and reproduction, as well as in defense against pathogenic microbes. Even though the primary and spatial structures of some nsLTPs from different plants indicate their similar features, they exhibit distinct lipid-binding specificities signifying their various biological roles that dictate further structural study. The present study determined the complete amino acid sequence, in silico 3D structure modeling, and the antiproliferative activity of nsLTP1 from fennel (Foeniculum vulgare) seeds. Fennel is a member of the family Umbelliferae (Apiaceae) native to southern Europe and the Mediterranean region. It is used as a spice medicine and fresh vegetable. Fennel nsLTP1 was purified using the combination of gel filtration and reverse-phase high-performance liquid chromatography (RP-HPLC). Its homogeneity was determined by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) and matrix-assisted laser desorption/ionization-time of flight (MALDI-TOF) mass spectrometry. The purified nsLTP1 was treated with 4-vinyl pyridine, and the modified protein was then digested with trypsin. The complete amino acid sequence of nsLTP1 established by intact protein sequence up to 28 residues, overlapping tryptic peptides, and cyanogen bromide (CNBr) peptides. Hence, it is confirmed that fennel nsLTP1 is a 9433 Da single polypeptide chain consisting of 91 amino acids with eight conserved cysteines. Moreover, the 3D structure is predicted to have four α-helices interlinked by three loops and a long C-terminal tail. The lipid-binding property of fennel nsLTP1 is examined in vitro using fluorescent 2-p-toluidinonaphthalene-6-sulfonate (TNS) and validated using a molecular docking study with AutoDock Vina. Both of the binding studies confirmed the order of binding efficiency among the four studied fatty acids linoleic acid > linolenic acid > Stearic acid > Palmitic acid. A preliminary screening of fennel nsLTP1 suppressed the growth of MCF-7 human breast cancer cells in a dose-dependent manner with an IC50 value of 6.98 µM after 48 h treatment.


Sign in / Sign up

Export Citation Format

Share Document