scholarly journals Development of Ecofriendly Corrosion Inhibitors for Application in Acidization of Petroleum Oil Well

2013 ◽  
Vol 2013 ◽  
pp. 1-9 ◽  
Author(s):  
M. Yadav ◽  
Sumit Kumar ◽  
P. N. Yadav

In the present investigation the protective ability of 1-(2-aminoethyl)-2-octadecylimidazoline (AEODI) and 1-(2-octadecylamidoethyl)-2-octadecylimidazoline (ODAEODI) as corrosion inhibitors for N80 steel in 15% hydrochloric acid has been studied, which may find application as ecofriendly corrosion inhibitors in acidizing processes in petroleum industry. Different concentration of synthesized inhibitors AEODI and ODAEODI was added to test solution (15% HCl), and corrosion inhibition of N80 steel was tested by weight loss, potentiodynamic polarization, and AC impedance measurements. Influence of temperature (298 to 323 K) on the inhibition behaviour was studied. Surface studies were performed by using SEM. It was found that both the inhibitors were effective inhibitors, and their inhibition efficiency was significantly increased with increasing their concentration. Polarization curves revealed that the used inhibitors represent mixed-type inhibitors. The adsorption of used inhibitors led to a reduction in the double-layer capacitance and an increase in the charge transfer resistance. The adsorption of used compounds was found to obey Langmuir isotherm. The adsorption of the corrosion inhibitors at the surface of N80 steel is the root cause of corrosion inhibition.

2013 ◽  
Vol 2013 ◽  
pp. 1-9 ◽  
Author(s):  
M. Yadav ◽  
Sumit Kumar ◽  
P. N. Yadav

Acidization is an oil reservoir stimulation technique for increasing oil well productivity. Hydrochloric acid is used in oil and gas production to stimulate the formation. The acid treatment occurs through N80 steel tubes. The process requires a high degree of corrosion inhibition of tubing material (N80 steel). In the present investigation effect of synthesized amino acid compounds, namely, acetamidoleucine (AAL) and benzamidoleucine (BAL) as corrosion inhibitors for N80 steel in 15% HCl solution was studied by polarization, AC impedance (EIS), and weight loss measurements. It was found that both the inhibitors were effective inhibitors and their inhibition efficiency was significantly increased with increasing concentration of inhibitors. Polarization curves revealed that the studied inhibitors represent mixed type inhibitors. AC impedance studies revealed that charge transfer resistance increases and double layer capacitance decreases in presence of inhibitors. Adsorption of inhibitors at the surface of N80 steel was found to obey Langmuir isotherm.


2020 ◽  
Vol 7 (5) ◽  
pp. 191692
Author(s):  
Yun Wang ◽  
Jun Hu ◽  
Lei Zhang ◽  
Jiangli Cao ◽  
Minxu Lu

The corrosion inhibition effect and adsorption behaviour of 1-phenyl-3-(phenylamino)propan-1-one (PPAPO) on N80 steel in hydrochloric acid solution have been investigated by Fourier transform infrared (FTIR), electrochemical method and scanning electron microscopy. The corrosion inhibition mechanism of PPAPO mixed with Na 2 WO 4 was interpreted from the thermodynamic point of view. The results indicated that PPAPO mixed with Na 2 WO 4 acted as a mixed-type inhibitor. The inhibition film formed on N80 steel surface can increase the charge transfer resistance and prevent the occurrence of corrosion reaction, thereby reducing the corrosion rate of metal surface. The inhibition efficiency was up to 96.65%; the inhibitor PPAPO with Na 2 WO 4 showed good synergistic effect on N80 corrosion behaviour in HCl solution. The adsorption behaviour of inhibitors on N80 steel surface was in accordance with the Langmuir adsorption model and mainly belonged to chemisorption. The adsorption process of PPAPO on N80 surface was spontaneous and irreversible endothermic reaction.


2020 ◽  
Vol 64 (4) ◽  
Author(s):  
Zineb Tribak ◽  
Mohammed Khalid Skalli ◽  
Omar Senhaji

Abstract. Three organic inhibitors, based 5-Chloroisatin’s bases, namely, 1-allyl-5-chloro-indoline-2,3-dione (TZACI). 5-chloro-1-(2-(dimethylamino) ethyl) indoline-2,3-dione (TZCDI),5-chloro-1-octylindoline-2,3-dione (TZCOI) were influence on corrosion inhibition of mild steel in 1.0M hydrochloric acid solution. The inhibition efficiency increased with the increase of a compound concentration in the case of these three inhibitors, which have the mixed type behavior proposed by the polarization studies. Impedance measurements showed that after the addition of inhibitors, charge-transfer resistance increased and double-layer capacitance decreased, involving increased inhibition efficiency. The adsorption of three inhibitors on a steel surface obeyed Langmuir model. Free energy of adsorption showed that the type of adsorption was physical for TZACI and chemical for the TZCDI, TZCOI. Scanning electron microscopic analyses confirm the formation of the protective film on the surface.


2014 ◽  
Vol 61 (3) ◽  
pp. 129-138 ◽  
Author(s):  
Mahendra Yadav ◽  
Sumit Kumar ◽  
Dipti Sharma

Purpose – The purpose of this investigation was to evaluate the protective ability of 2-amino-N-octadecylacetamide (AOA) and 2-amino-N-octadecyl-3-(4-hydroxyphenyl) propionamide (AOHP) as corrosion inhibitors for N80 steel in 15 per cent hydrochloric acid (HCl), which may find application as eco-friendly corrosion inhibitors in acidizing processes in the petroleum industry. Due to scale plugging in the well bore, there can be a decline in the crude production rate, and an acidization operation has to be carried out, normally by using 15 per cent HCl to remove the scale plugging. To reduce the aggressive attack of HCl on tubing and casing materials (N80 steel), inhibitors are added to the acid solution during the acidifying process. Design/methodology/approach – Different concentrations of the synthesized inhibitors AOA and AOHP were added to the test solution (15 per cent HCl), and the corrosion inhibition efficiencies of these inhibitors for N80 steel were calculated from weight loss determinations, potentiodynamic polarization scans and alternating current (AC) impedance measurements. The influence of temperature (298-323 K) on the inhibition behavior was studied. Surface examinations were performed by means of Fourier transform infrared spectra and scanning electron microscope. Findings – AOA and AOHP at 150-ppm concentration showed a maximum efficiency of 90.04 and 94.97 per cent, respectively, at 298 K in 15 per cent HCl solution. Both the inhibitors acted as mixed corrosion inhibitors. The adsorption of the corrosion inhibitors at the surface of the N80 steel was the underlying mechanism of corrosion inhibition. Originality/value – This paper reports the preliminary laboratory results of inhibitors AOA and AOHP for the corrosion prevention of N80 steel casings and tubulars exposed to HCl and may be of practical help to petroleum engineers for carrying out acidization in oil wells after further investigation of the compound at higher temperature.


Molecules ◽  
2020 ◽  
Vol 26 (1) ◽  
pp. 135
Author(s):  
Aurelia Visa ◽  
Nicoleta Plesu ◽  
Bianca Maranescu ◽  
Gheorghe Ilia ◽  
Ana Borota ◽  
...  

The inhibition effect of N,N′-phosphonomethylglycine (PMG) and vinyl phosphonic acid (VPA) on the 3% NaCl acidic solution corrosion of carbon steel iron was studied at different immersion times by potentiodynamic polarization, electrochemical impedance spectroscopy, attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectroscopy, and computational methods. It is found from the polarization studies that PMG and VPA behave as mixed-type inhibitors in NaCl. Values of charge transfer resistance (Rct) and double layer capacitance (Cdl) in the absence and presence of inhibitors are determined. The PMG and VPA inhibitors were capable of inhibiting the corrosion process up to ≈91% and ≈85%, respectively. In the presence of PMG, the synergic effect of chlorine ions was observed. Density functional theory (DFT) was engaged to establish the adsorption site of PMG, VPA, and their deprotonated states. For studied compounds, the resulted values of ELUMO, EHOMO, energy gap (∆E), dipole moment (μ), electronic hardness (η), global softness (σ), electrophilic index (ω), and the electronic potential map are in concordance with the experimental data results regarding their corrosion inhibition behavior and adsorption on the metal surface.


2017 ◽  
Vol 41 (21) ◽  
pp. 13114-13129 ◽  
Author(s):  
Neeraj Kumar Gupta ◽  
Chandrabhan Verma ◽  
R. Salghi ◽  
H. Lgaz ◽  
A. K. Mukherjee ◽  
...  

Phosphorus containing compounds have been evaluated by experimental and theoretical techniques and more than 96% corrosion inhibition efficiency was observed at 200 ppm concentration.


2019 ◽  
Vol 814 ◽  
pp. 499-504
Author(s):  
Ren Jun Xu ◽  
Hua Lei He ◽  
Ying Li Tang ◽  
Min Lan Gao ◽  
Hai Peng Hui ◽  
...  

Ligustrum vulgare is an evergreen tree. The leaves are opposite, glossy dark green, 6–17 centimetres (2.4–6.7 in) long and 3–8 centimetres (1.2–3.1 in) broad. The ligustrum vulgare leaves contain two main components, one of which is oleanolic acid and the other is p-hydroxyphenylethanol which indicates its extracts suitable to be used as an effective corrosion inhibitor. Extracts of ligustrum vulgare leaves (PE) were modified with hydroxymethylation reaction (PM1) and Mannich reaction (PM2) to produce the relative stable green acidic corrosion inhibitors. The extracts of ligustrum vulgare leaves have been investigated on the corrosion inhibition of A3 steel with weight loss. The results show that these inhibitors have good corrosion inhibition effect on A3 steel. The PM2 are the most effective for corrosion inhibition, and the inhibition efficiency can reach 75.95%. When the temperature is 60°C, the corrosion inhibition rate of PE, PM1, PM2 is only 24.46%, 42.35% and 39.35% respectively which can not effectively prevent the corrosion of the metal. And the extracts inhibit corrosion mainly by adsorption mechanism. This adsorption accords with Langmuir adsorption isotherm.


2019 ◽  
Vol 796 ◽  
pp. 112-120
Author(s):  
Mysara Eissa Mohyaldinn ◽  
Wai Lin ◽  
Ola Gawi ◽  
Mokhtar Che Ismail ◽  
Quosay A. Ahmed ◽  
...  

Most of the corrosion inhibitors that are used in industry contain chemicals that are harmful to health and environment. Corrosion inhibitors derived from green sources are, therefore, believed to be a good option for replacing the chemical corrosion inhibitors. In this work, a green oleochemical corrosion inhibitor derived from Jatropha Curcas is introduced. The paper discusses the methodology of deriving the corrosion inhibitor as well as the experimental test conducted for evaluating its corrosion inhibition efficiency. The new oleochemical corrosion inhibitor was derived via two reactions. Jatropha oil was firstly saponified with sodium hydroxide to yield gras acid and glycerol, which was then esterified with boron fluoride in presence of excess methanol to produce the oil methyl esters, which is used as oleo-chemical corrosion inhibitor. To evaluate the oleo-chemical corrosion inhibitor, the corrosion rate of mild steel in NaCl corrosive medium with CO2 is tested at static condition and two dynamic conditions, namely 500 and 1500 rpm. This is to simulate the transitional and turbulent flow in a pipeline. At each dynamic condition, the proposed corrosion inhibitor was tested at concentration dosages of 0, 50, 100, and 150 ppm. The experiments results revealed a good performance of the new oleochemical corrosion inhibitor. The inhibition efficiency was found to be highly affected by the concentration of corrosion inhibitor. Total corrosion inhibition of the mild steel was noticed by using 150 ppm at dynamic condition of 500 rpm.


Sign in / Sign up

Export Citation Format

Share Document