Giant actuation in bulk carbon nanotubes under coupled electric and magnetic fields

RSC Advances ◽  
2015 ◽  
Vol 5 (33) ◽  
pp. 26157-26162 ◽  
Author(s):  
Prarthana Gowda ◽  
Soumalya Mukherjee ◽  
Siva K. Reddy ◽  
Rituparna Ghosh ◽  
Abha Misra

The transformation of electrostrictive to piezoelectric behavior is observed in carbon nanotube under coupled electro-magnetic field. Five times higher actuation response was observed under coupled field as compared to the individual fields.

2012 ◽  
Vol 1407 ◽  
Author(s):  
Elena Cimpoiasu ◽  
David Lashmore ◽  
Brian White ◽  
George A. Levin

ABSTRACTWe performed magnetoresistance (MR) measurements on bulk carbon nanotube sheets that had been partially aligned by post-fabrication stretching. The magnetic field was applied under different orientations with respect to the direction of the stretch, while the electric current was either parallel or perpendicular to the direction of the stretch. We found that the fielddependence of the MR is composed of two terms, one positive and one negative. The magnitudes of both terms are largest when the field is parallel with the direction of the stretch. If the sheets are treated with nitric acid, the positive term is removed and the MR is smallest when the field is aligned with the magnetic field. We attribute these anisotropic features to magnetoelastic effects induced by the coupling between the magnetic catalyst nanoparticles, the magnetic field, and the network of nanotubes.


2020 ◽  
Vol 2020 (10) ◽  
pp. 4-11
Author(s):  
Victor Tikhomirov ◽  
Aleksandr Gorlenko ◽  
Stanislav Volohov ◽  
Mikhail Izmerov

The work purpose is the investigation of magnetic field impact upon properties of friction steel surfaces at fit stripping with tightness through manifested effects and their wear visually observed. On the spots of a real contact the magnetic field increases active centers, their amount and saturation with the time of dislocation outlet, and has an influence upon tribo-mating. The external electro-magnetic field promotes the increase of the number of active centers at the expense of dislocations outlet on the contact surface, and the increase of a physical contact area results in friction tie strengthening and growth of a friction factor. By the example of friction pairs of a spentonly unit in the suspension of coach cars there is given a substantiation of actuality and possibility for the creation of technical devices with the controlled factor of friction and the stability of effects achieved is also confirmed experimentally. Investigation methods: the fulfillment of laboratory physical experiments on the laboratory plant developed and patented on bush-rod samples inserted with the fit and tightness. The results of investigations and novelty: the impact of the magnetic field upon the value of a stripping force of a press fit with the guaranteed tightness is defined. Conclusion: there is a possibility to control a friction factor through the magnetic field impact upon a friction contact.


In a previous paper the absorption of γ-rays in the K-X-ray levels of the atom in which they are emitted was calculated according to the Quantum Mechanics, supposing the γ-rays to be emitted from a doublet of moment f ( t ) at the centre of the atom. The non-relativity wave equation derived from the relativity wave equation for an electron of charge — ε moving in an electro-magnetic field of vector potential K and scalar potential V is h 2 ∇ 2 ϕ + 2μ ( ih ∂/∂ t + εV + ih ε/μ c (K. grad)) ϕ = 0. (1) Suppose, however, that K involves the space co-ordinates. Then, (K. grad) ϕ ≠ (grad . K) ϕ , and the expression (K . grad) ϕ is not Hermitic. Equation (1) cannot therefore be the correct non-relativity wave equation for a single electron in an electron agnetic field, and we must substitute h 2 ∇ 2 ϕ + 2μ ( ih ∂/∂ t + εV) ϕ + ih ε/ c ((K. grad) ϕ + (grad. K) ϕ ) = 0. (2)


Galaxies ◽  
2021 ◽  
Vol 9 (2) ◽  
pp. 22
Author(s):  
Avijit K. Ganguly ◽  
Venktesh Singh ◽  
Damini Singh ◽  
Ankur Chaubey

In the presence of a thermal medium or an external electro-magnetic field, neutrinos can interact with photon, mediated by the corresponding charged leptons (real or virtual). The effect of a medium or an electromagnetic field is two-fold—to induce an effective [...]


2014 ◽  
Vol 5 ◽  
pp. 1575-1579 ◽  
Author(s):  
Christoph Nick ◽  
Sandeep Yadav ◽  
Ravi Joshi ◽  
Christiane Thielemann ◽  
Jörg J Schneider

The growth of cortical neurons on three dimensional structures of spatially defined (structured) randomly oriented, as well as on vertically aligned, carbon nanotubes (CNT) is studied. Cortical neurons are attracted towards both types of CNT nano-architectures. For both, neurons form clusters in close vicinity to the CNT structures whereupon the randomly oriented CNTs are more closely colonised than the CNT pillars. Neurons develop communication paths via neurites on both nanoarchitectures. These neuron cells attach preferentially on the CNT sidewalls of the vertically aligned CNT architecture instead than onto the tips of the individual CNT pillars.


2013 ◽  
Vol 2013 ◽  
pp. 1-5 ◽  
Author(s):  
Jeewan Chandra ◽  
Pooja Kapri Bhatt ◽  
Kuldeep Kholiya

Compression behavior of carbon nanotube bundles and individual carbon nanotubes within the bundle has been studied by using the Suzuki, Shanker, and usual Tait formulations. It is found that the Suzuki formulation is not capable of explaining the compression behavior of nanomaterials. Shanker formulation slightly improves the results obtained by the Suzuki formulation, but only usual Tait’s equation (UTE) of state gives results in agreement to the experimental data. The present study reveals that the product of bulk modules and the coefficient of volume thermal expansion remain constant for carbon nanotubes. It has also been found that the individual carbon nanotubes are less compressible than bundles of carbon nanotubes.


Sign in / Sign up

Export Citation Format

Share Document