scholarly journals On the Stability of an Intermediate Coupled Ocean-Atmosphere Model

2013 ◽  
Vol 2013 ◽  
pp. 1-9
Author(s):  
Tianxu Zhao ◽  
Guang-an Zou

The explicit finite difference scheme for solving an intermediate coupled ocean-atmosphere equations has been proposed and discussed. The discrete Fourier analysis within Gerschgorin circle theorem is applied to the stability analysis of this numerical model. The stability criterion that we obtained includes advection, rotation, dissipation, and friction terms, without any assumptions, which is also including the Courant-Friedrichs-Lewy (CFL) condition as a special case. Numerical sensitivity experiments are also carried out by varying the model parameters.

2013 ◽  
Vol 2013 ◽  
pp. 1-12 ◽  
Author(s):  
Guang-an Zou ◽  
Bo Wang ◽  
Mu Mu

A 1.5-layer reduced-gravity shallow-water ocean model in spherical coordinates is described and discretized in a staggered grid (standard Arakawa C-grid) with the forward-time central-space (FTCS) method and the Leap-frog finite difference scheme. The discrete Fourier analysis method combined with the Gershgorin circle theorem is used to study the stability of these two finite difference numerical models. A series of necessary conditions of selection criteria for the time-space step sizes and model parameters are obtained. It is showed that these stability conditions are more accurate than the Courant-Friedrichs-Lewy (CFL) condition and other two criterions (Blumberg and Mellor, 1987; Casulli, 1990, 1992). Numerical experiments are proposed to test our stability results, and numerical model that is designed is also used to simulate the ocean current.


1988 ◽  
Vol 25 (2) ◽  
pp. 226-234
Author(s):  
L. J. Pascoe ◽  
F. Hron ◽  
P. F. Daley

The Alekseev–Mikhailenko method (AMM) is the name given to a series of algorithms that use one or more finite spatial transforms to reduce the dimensionality of a wave-propagation problem to that of one space dimension and time. This reduced equation is then solved using finite-difference techniques, and the space–time solution is recovered by applying inverse finite spatial transform(s). In this paper the elastodynamic wave equation that governs the coupled P–Sv motion in an isotropic, vertically inhomogeneous elastic half space is investigated using the AMM. Two types of impulsive body forces that may be used to excite the medium are examined, as is the problem of obtaining accurate transformed finite-difference analogues at the free surface. The second of these is accomplished by introducing the boundary conditions that the shear and normal stress must vanish here and by incorporating their transforms into the transformed elastodynamic equations. The stability criterion for the explicit finite-difference method is given cursory treatment, as detailed discussion of this aspect may be found in many texts that deal with the subject of finite differences.A coal-seam model (two thin, low-velocity layers embedded in a half space) illustrates the method. Both horizontal and vertical seismic traces are computed for this model and the results examined in relation to other seismic-modelling techniques.


1977 ◽  
Vol 17 (01) ◽  
pp. 79-91 ◽  
Author(s):  
D.W. Peaceman

Abstract The usual linearized stability analysis of the finite-difference solution for two-phase flow in porous media is not delicate enough to distinguish porous media is not delicate enough to distinguish between the stability of equations using semi-implicit mobility and those using completely implicit mobility. A nonlinear stability analysis is developed and applied to finite-difference equations using an upstream mobility that is explicit, completely implicit, or semi-implicit. The nonlinear analysis yields a sufficient (though not necessary) condition for stability. The results for explicit and completely implicit mobilities agree with those obtained by the standard linearized analysis; in particular, use of completely implicit mobility particular, use of completely implicit mobility results in unconditional stability. For semi-implicit mobility, the analysis shows a mild restriction that generally will not be violated in practical reservoir simulations. Some numerical results that support the theoretical conclusions are presented. Introduction Early finite-difference, Multiphase reservoir simulators using explicit mobility were found to require exceedingly small time steps to solve certain types of problems, particularly coning and gas percolation. Both these problems are characterized percolation. Both these problems are characterized by regions of high flow velocity. Coats developed an ad hoc technique for dealing with gas percolation, but a more general and highly successful approach for dealing with high-velocity problems has been the use of implicit mobility. Blair and Weinaug developed a simulator using completely implicit mobility that greatly relaxed the time-step restriction. Their simulator involved iterative solution of nonlinear difference equations, which considerably increased the computational work per time step. Three more recent papers introduced the use of semi-implicit mobility, which proved to be greatly superior to the fully implicit method with respect to computational effort, ease of use, and maximum permissible time-step size. As a result, semi-implicit mobility has achieved wide use throughout the industry. However, this success has been pragmatic, with little or no theoretical work to justify its use. In this paper, we attempt to place the use of semi-implicit mobility on a sounder theoretical foundation by examining the stability of semi-implicit difference equations. The usual linearized stability analysis is not delicate enough to distinguish between the semi-implicit and completely implicit difference equation. A nonlinear stability analysis is developed that permits the detection of some differences between the stability of difference equations using implicit mobility and those using semi-implicit mobility. DIFFERENTIAL EQUATIONS The ideas to be developed may be adequately presented using the following simplified system: presented using the following simplified system: horizontal, one-dimensional, two-phase, incompressible flow in homogeneous porous media, with zero capillary pressure. A variable cross-section is included so that a variable flow velocity may be considered. The basic differential equations are (1) (2) The total volumetric flow rate is given by (3) Addition of Eqs. 1 and 2 yields =O SPEJ P. 79


Author(s):  
N.H. Sweilam ◽  
T.A. Assiri

In this paper, the space fractional wave equation (SFWE) is numerically studied, where the fractional derivative is defined in the sense of Caputo. An explicit finite difference approximation (EFDA) for SFWE is presented. The stability and the error analysis of the EFDA are discussed. To demonstrate the effectiveness of the approximated method, some test examples are presented.   


Author(s):  
Г.В. Кривовичев ◽  
Е.С. Марнопольская

Статья посвящена анализу и оптимизации явных разностных схем для решения уравнений переноса, возникающих на этапе адвекции метода расщепления по физическим процессам. Метод может применяться как для решеточных уравнений Больцмана, так и при решении кинетических уравнений общего вида. Рассматриваются схемы второго-четвертого порядков аппроксимации. Для уменьшения эффектов численных диссипации и дисперсии используются схемы с параметром. С использованием метода фон Неймана и полиномиальной аппроксимации границ областей устойчивости получены условия устойчивости схем в виде неравенств на значения параметра Куранта. Оптимальные значения параметра для регулирования диссипативных и дисперсионных эффектов предлагается находить посредством решения задач минимизации функций максимума. Схемы с оптимальными значениями параметра применяются при решении тестовых задач - для одномерного и двумерного уравнений переноса, а также при применении метода расщепления к решению задачи о течении в каверне с подвижной крышкой. This paper is devoted to the analysis and optimization of explicit finite-difference schemes for solving the transport equations arising at the advection stage in the method of splitting into physical processes. The method can be applied to the lattice Boltzmann equations and to the kinetic equations of general type. The second-to-fourth order schemes are considered. In order to minimize the effect of numerical dispersion and dissipation, the parametric schemes are used. The Neumann method and the polynomial approximation of the boundaries of stability domains are employed to obtain the stability conditions in the form of inequalities imposed on the Courant parameter. The optimal values of the parameter used to control the dissipation and dispersion effects are found by minimizing the maximum function. The schemes with optimal parameters are applied for the numerical solution of 1D and 2D advection equations and for the problem of lid-driven cavity flow.


2016 ◽  
Vol 26 (3) ◽  
pp. 429-435 ◽  
Author(s):  
Roman I. Parovik

Abstract The paper deals with the model of variable-order nonlinear hereditary oscillator based on a numerical finite-difference scheme. Numerical experiments have been carried out to evaluate the stability and convergence of the difference scheme. It is argued that the approximation, stability and convergence are of the first order, while the scheme is stable and converges to the exact solution.


Author(s):  
Prateek Sazawal ◽  
Daniel Choukroun ◽  
Heike Benninghoff ◽  
Eberhard Gill

Hardware-in-the-loop simulations of two interacting bodies are often accompanied by a time delay. The time delay, however small, may lead to instability in the hardware-in-the-loop system. The present work investigates the source of instability in a two spacecraft system model with a time-delayed contact force feedback. A generic compliance-device-based contact force model is proposed with elastic, viscous, and Coulomb friction effects in three dimensions. A 3D nonlinear system model with time delay is simulated, and the effect of variations in contact force model parameters is studied. The system is then linearized about a nominal state to determine the stability regions in terms of parameters of the spring-dashpot contact force model by the pole placement method. Furthermore, the stability analysis is validated for the nonlinear system by energy observation for both the stable and unstable cases.


Sign in / Sign up

Export Citation Format

Share Document