scholarly journals Geometry of the Universe and Its Relation to Entropy and Information

2013 ◽  
Vol 2013 ◽  
pp. 1-3 ◽  
Author(s):  
Ioannis Haranas ◽  
Ioannis Gkigkitzis

In an effort to investigate a possible relation between geometry and information, we establish a relation of the Ricci scalar in the Robertson-Walker metric of the cosmological Friedmann model to the number of informationNand entropyS. This is with the help of a previously derived result that relates the Hubble parameter to the number of informationN. We find that the Ricci scalar has a dependence which is inversely proportional to the number of informationNand entropyS. Similarly, a nonzero number of information would imply a finite Ricci scalar, and therefore space time will unfold. Finally, using the maximum number of information existing in the universe, we obtain a numerical value for the Ricci scalar to beO(10-52) m-2.

Author(s):  
Steffen Haase

Here we use the flat Friedmann-Lemaitre-Robertson-Walker metric describing a spatially homogeneous and isotropic universe to derive the cosmological redshift distance in a way which differs from that which can be found in the astrophysical literature. We use the co-moving coordinate re (the subscript e indicates emission) for the place of a galaxy which is emitting photons and ra (the subscript a indicates absorption) for the place of an observer within a different galaxy on which the photons - which were traveling thru the universe - are absorbed. Therefore the real physical distance - the way of light - is calculated by D = a(t0) ra - a(te) re. Here means a(t0) the today’s (t0) scale parameter and a(te) the scale parameter at the time of emission (te) of the photons. Nobody can doubt this real travel way of light: The photons are emitted on the co-moving coordinate place re and are than traveling to the co-moving coordinate place ra. During this traveling the time is moving from te to t0 (te ≤ t0) and therefore the scale parameter is changing in the meantime from a(te) to a(t0). Using this right way of light we calculate some relevant classical cosmological equations (effects) and compare these theoretical results with some measurements of astrophysics. As one result we get e.g. the today’s Hubble parameter H0a ≈ 62.34 km/(s Mpc). This value is smaller than the Hubble parameter H0,Planck ≈ 67.66 km/(s Mpc) resulting from Planck 2018 data [12] which is discussed in the literature.


2019 ◽  
Author(s):  
Vitaly Kuyukov

The modern formulation of cosmology has different approaches, one of which is quantum cosmology. For example, the equation Wheeler - DeWitt without a direct evolution. In this article we will use the recent approach to quantum cosmology based on the principle of uncertainty between the Hubble parameter and the volume of the space. In this article, we use the complete formulation of the equations for the wave function of the universe. For this purpose, the Schwinger equation for the evolution of the wave function along the Hyper-surface of space-time.


2019 ◽  
Author(s):  
Vitaly Kuyukov

In this article we will use the recent approach to quantum cosmology based on the principle of uncertainty between the Hubble parameter and the volume of the space. In this article, we use the complete formulation of the equations for the wave function of the universe. For this purpose, the Schwinger equation for the evolution of the wave function along the hyper-surface of space-time.


1996 ◽  
Vol 05 (03) ◽  
pp. 293-312 ◽  
Author(s):  
C.W. KIM ◽  
J. SONG

We propose a scale-dependent cosmology with the stress-energy tensor of viscous fluid, in which the Robertson-Walker metric and the Einstein equation are generalized in such a way that Ω0, H0 and the age of the Universe all become scale-dependent. Its implications on the observational cosmology and possible modifications of the standard Friedmann cosmology are discussed. For example, since the age of the Universe in this model depends on the local values of Ω0 and the Hubble parameter, the age of the locally open Universe even with the high value of hubble parameter can be long enough to accommodate the measured ages of the oldest stars and globular clusters.


2016 ◽  
pp. 4058-4069
Author(s):  
Michael A Persinger

                                Translation of four dimensional axes anywhere within the spatial and temporal boundaries of the universe would require quantitative values from convergence between parameters that reflect these limits. The presence of entanglement and volumetric velocities indicates that the initiating energy for displacement and transposition of axes would be within the upper limit of the rest mass of a single photon which is the same order of magnitude as a macroscopic Hamiltonian of the modified Schrödinger wave function. The representative metaphor is that any local 4-D geometry, rather than displaying restricted movement through Minkowskian space, would instead expand to the total universal space-time volume before re-converging into another location where it would be subject to cause-effect. Within this transient context the contributions from the anisotropic features of entropy and the laws of thermodynamics would be minimal.  The central operation of a fundamental unit of 10-20 J, the hydrogen line frequency, and the Bohr orbital time for ground state electrons would be required for the relocalized manifestation. Similar quantified convergence occurs for the ~1012 parallel states within space per Planck’s time which solve for phase-shift increments where Casimir and magnetic forces intersect.  Experimental support for these interpretations and potential applications is considered. The multiple, convergent solutions of basic universal quantities suggest that translations of spatial axes into adjacent spatial states and the transposition of four dimensional configurations any where and any time within the universe may be accessed but would require alternative perspectives and technologies.


2019 ◽  
Author(s):  
Adib Rifqi Setiawan

Put simply, Lisa Randall’s job is to figure out how the universe works, and what it’s made of. Her contributions to theoretical particle physics include two models of space-time that bear her name. The first Randall–Sundrum model addressed a problem with the Standard Model of the universe, and the second concerned the possibility of a warped additional dimension of space. In this work, we caught up with Randall to talk about why she chose a career in physics, where she finds inspiration, and what advice she’d offer budding physicists. This article has been edited for clarity. My favourite quote in this interview is, “Figure out what you enjoy, what your talents are, and what you’re most curious to learn about.” If you insterest in her work, you can contact her on Twitter @lirarandall.


2019 ◽  
Author(s):  
Adib Rifqi Setiawan

Put simply, Lisa Randall’s job is to figure out how the universe works, and what it’s made of. Her contributions to theoretical particle physics include two models of space-time that bear her name. The first Randall–Sundrum model addressed a problem with the Standard Model of the universe, and the second concerned the possibility of a warped additional dimension of space. In this work, we caught up with Randall to talk about why she chose a career in physics, where she finds inspiration, and what advice she’d offer budding physicists. This article has been edited for clarity. My favourite quote in this interview is, “Figure out what you enjoy, what your talents are, and what you’re most curious to learn about.” If you insterest in her work, you can contact her on Twitter @lirarandall.


Author(s):  
William Lane Craig

A survey of recent philosophical literature on the kalam cosmological argument reveals that arguments for the finitude of the past and, hence, the beginning of the universe remain robust. Plantinga’s brief criticisms of Kant’s argument in his First Antinomy concerning time are shown not to be problematic for the kalam argument. This chapter addresses, one by one, the two premises of the kalam, focusing on their philosophical aspects. The notion of infinity, both actual and potential, is discussed in relation to the coming into being of the universe. In addition, the scientific aspects of the two premises are also, briefly, addressed. Among these are the Borde-Guth-Vilenkin theorem, which proves that classical space-time cannot be extended to past infinity but must reach a boundary at some time in the finite past. This, among other factors, lends credence to the kalam argument’s second premise.


Symmetry ◽  
2020 ◽  
Vol 12 (3) ◽  
pp. 344
Author(s):  
T. D. Le

Astrophysical tests of current values for dimensionless constants known on Earth, such as the fine-structure constant, α , and proton-to-electron mass ratio, μ = m p / m e , are communicated using data from high-resolution quasar spectra in different regions or epochs of the universe. The symmetry wavelengths of [Fe II] lines from redshifted quasar spectra of J110325-264515 and their corresponding values in the laboratory were combined to find a new limit on space-time variations in the proton-to-electron mass ratio, ∆ μ / μ = ( 0.096 ± 0.182 ) × 10 − 7 . The results show how the indicated astrophysical observations can further improve the accuracy and space-time variations of physics constants.


Universe ◽  
2021 ◽  
Vol 7 (7) ◽  
pp. 205
Author(s):  
Sanjay Mandal ◽  
Avik De ◽  
Tee-How Loo ◽  
Pradyumn Kumar Sahoo

The objective of the present paper is to investigate an almost-pseudo-Ricci symmetric FRW spacetime with a constant Ricci scalar in a dynamic cosmological term Λ(t) and equation of state (EoS) ω(t) scenario. Several cosmological parameters are calculated in this setting and thoroughly studied, which shows that the model satisfies the late-time accelerating expansion of the universe. We also examine all of the energy conditions to check our model’s self-stability.


Sign in / Sign up

Export Citation Format

Share Document