scholarly journals The Audio Frequency Conductance Study of Some Metal Succinate Salts in Aqueous Medium at Different Temperatures (Part I: Magnesium, Manganese (II), Barium and Copper Succinates)

2013 ◽  
Vol 2013 ◽  
pp. 1-10
Author(s):  
Kosrat N. Kaka ◽  
Anis A. Al-Najar ◽  
Wali M. Hamad

The audio electrical conductances of aqueous solutions of magnesium, manganese II, barium, and copper succinates have been measured at various temperatures in the range of 298.15 K to 313.15 K, using an audio frequency conductance bridge. The evaluation of conductance data was carried out by minimisation technique using the theoretical equations of the complete and modified forms of Pitts (P) and Fuoss-Hsia (F-H), each a three-parameter equation, association constant (KA), molar conductance (Λm), and distance parameter (a). Quantitative results showed that these salts do not behave as “strong” electrolytes, and that their dissociations are far from complete. The abnormally low conductances of these electrolytes are not due to the presence of electrically neutral molecules but to the ion-pair formation. The Walden product values, as well as the standard thermodynamics functions (ΔH∘,ΔG∘,ΔS∘) for the association reaction at the four temperatures studied, have been evaluated.

2009 ◽  
Vol 64 (3-4) ◽  
pp. 269-272 ◽  
Author(s):  
Dip Singh Gill ◽  
Dilbag Rana

Abstract Attempts have been made to prepare some novel copper(I) nitrate, sulfate, and perchlorate complexes. Molar conductances of these complexes have been measured in organic solvents like acetonitrile (AN), acetone (AC), methanol (MeOH), N,N-dimethylformamide (DMF), N,Ndimethylacetamide (DMA), and dimethylsulfoxide (DMSO) at 298 K. The molar conductance data have been analyzed to obtain limiting molar conductances (λ0) and ion association constants (KA) of the electrolytes. The results showed that all these complexes are strong electrolytes in all organic solvents. The limiting ionic molar conductances (λo± ) for various ions have been calculated using Bu4NBPh4 as reference electrolyte. The actual radii for copper(I) complex ions are very large and different in different solvents and indicate some solvation effects in each solvent system


2019 ◽  
Vol 31 (11) ◽  
pp. 2557-2566
Author(s):  
Shashi Kant Sharma ◽  
Poonam ◽  
Nisha Sharma

To investigate the behaviour of doxycycline hyclate in water, aqueous glycine and aqueous L-alanine solutions, the viscometric and conductometric studies have been conducted at different temperatures. Viscosity data has been used to derive the Jones-Dole viscosity B-coefficient, temperature derivative of B-coefficient (dB/dT), viscosity B-coefficient of transfer (ΔtrB), free energy of activation of viscous flow per mole of solvent (Δμ1 o*) and solute (Δμ2o*) respectively, activation entropy (ΔS2o*) and activation enthalpy (ΔH2o*). Conductance data has been used to compute Walden product (Λm oηo) and temperature coefficient of Walden product (dΛmoηo/dT) for doxycycline hyclate in water, and in aqueous glycine and aqueous L-alanine solution. The positive values of B-coefficient, ΔtrB indicate the prevailing of hydrophilic-ionic interactions in the systems under examination. The negative values of dB/dT and positive values of temperature coefficient of Walden product infer structure maker tendency of doxycycline hyclate in water, and in aqueous glycine and aqueous L-alanine solution. Transfer energy parameters indicate the breaking of intermolecular bonds in transition state which means that formation of activated complex is unfavourable


2014 ◽  
Vol 79 (5) ◽  
pp. 565-578 ◽  
Author(s):  
Rashmidipta Biswas ◽  
Dhiraj Brahman ◽  
Biswajit Sinha

The complexation reaction between salicylaldehyde thiosemicarbazone, abbreviated as STSC, with Cu2+ ion was studied in the binary mixtures of methanol + 1,4-dioxane binary by using UV-Visible spectrophotometric and conductometric methods at different temperatures. The formation constants (Kf) for the 1:1 complex, Cu2+-STSC, were calculated from computer fitting of the absorbance and molar conductance data against various mole ratios (cM:cL or cL:cM) in different binary solvent mixtures. A non-linear correlation was observed for the variation of logKf for the complex against the solvent compositions. Various thermodynamic parameters (?H, ?S and ?G) for the formation of Cu2+-STSC complex were also determined from the temperature dependence of the stability constants (Kf). The results showed that the complexation reaction is affected by the nature and composition of the mixed solvents.


2004 ◽  
Vol 218 (5) ◽  
pp. 599-610 ◽  
Author(s):  
Purushottam Haldar ◽  
Bijan Das

AbstractThe electrical conductances of the solutions of tetrabutylammonium bromide (Bu4NBr), sodium tetraphenylborate (NaPh4B) and sodium bromide (NaBr) in 2-ethoxyethanol have been reported at 35, 40, 45 and 50°C. The conductance data have been analyzed by the 1978 Fuoss conductance–concentration equation in terms of the limiting molar conductance (Λ0), the association constant (KΛ) and the association diameter (R). The ionic contributions to the limiting molar conductances (Λ0) have been estimated using the “reference electrolyte” tetrabutylammonium tetraphenylborate (Bu4NPh4B). Appreciable ionic association was observed for all of these electrolytes which were found to exist in the form of solvent-separated ion-pairs in 2-ethoxyethanol. The tetrabutylammonium and tetraphenylborate ions are found to remain scarcely solvated whereas the sodium and bromide ions undergo substantial solvation in 2-ethoxyethanol medium in the temperature range investigated here.


2004 ◽  
Vol 59 (9) ◽  
pp. 615-620 ◽  
Author(s):  
Dip Singh Gill ◽  
Hardeep Anand ◽  
J. K. Puri

Viscosity and molar conductance of Bu4NBPh4, Bu4NClO4, [Cu(CH3CN)4]ClO4, NaClO4 and NaBPh4 have been measured in the concentration ranges 0.02 - 0.5 mol dm−3 and 0.0005 - 0.0065 mol dm−3 at 298.15 K in AN + DMF mixtures containing 0, 10, 20, 40, 60, 75, 80, 90, and 100 mol % DMF. The viscosity data have been analyzed by the extended form of the Jones-Dole equation in the form: (η/η0) = 1+AC1/2+BC+DC2 to evaluate B and D parameters and the conductance data by the Shedlovsky equation to evaluate Λo and KA values of the salts. Ionic viscosity B-coefficients (B±) and ionic molar conductances (λ◦ i) have been calculated by using Bu4NBPh4 as a reference electrolyte. Solvated radii (ri) for Na+, Cu+ and ClO4 − have been estimated by using Gill’s modification of Stokes’ law. The variation of B± and ri as a function of mol % DMF shows that both Na+ and Cu+ are highly solvated in AN + DMF mixtures over the entire composition region. The solvation passes through a maximum between 40 to 80 mol % DMF. Both Na+ and Cu+ are more strongly solvated between 40 to 80 mol % DMF. Cu+ is relatively more strongly solvated than Na+ in AN + DMF mixtures. ClO4 − shows poor solvation in AN + DMF mixtures.


RSC Advances ◽  
2016 ◽  
Vol 6 (11) ◽  
pp. 9096-9105 ◽  
Author(s):  
Gholam Hossien Rounaghi ◽  
Mostafa Gholizadeh ◽  
Fatemeh Moosavi ◽  
Iman Razavipanah ◽  
Hossein Azizi-Toupkanloo ◽  
...  

The variation of molar conductance versus mole ratio for (kryptofix 22DD·La)3+ complex in methanol solution at different temperatures is in accordance with the variation of pair correlation function of oxygen atoms.


1976 ◽  
Vol 54 (18) ◽  
pp. 2953-2966 ◽  
Author(s):  
Douglas E. Goldsack ◽  
Raymond Franchetto ◽  
Arlene (Anttila) Franchetto

The Falkenhagen–Leist–Kelbg equation for the conductivity of electrolyte solutions has been extended to include the effect of solvation on the concentration of the salt. Two equations have been derived, both of which have only two freely adjustable parameters at any temperature: Λ0 the molar conductance of the salt at infinite dilution and H0, a solvation number parameter for the salt. In one of these equations H0 is assumed to be independent of concentration. In the other, H0 is assumed to be dependent on concentration and an explicit concentration dependent formula is derived for H0. Conductance data for the alkali halide salts in the 0.5 to 10 m concentration range and 0 to 60 °C temperature range were found to be adequately reproduced by both these equations, but with the variable hydration parameter equation yielding better fits to the data. The H0 parameters from the fixed hydration parameter equation are found to be similar to those obtained from the analysis of activity coefficient and other data whereas the variable hydration parameter equation yields H0 parameters which are much larger.


Sign in / Sign up

Export Citation Format

Share Document