scholarly journals Distributed Drives Monitoring and Control: A Laboratory Setup

2013 ◽  
Vol 2013 ◽  
pp. 1-10
Author(s):  
Mini Sreejeth ◽  
Parmod Kumar ◽  
Madhusudan Singh

A laboratory setup of distributed drives system comprising a three-phase induction motor (IM) drive and a permanent magnet synchronous motor (PMSM) drive is modeled, designed, and developed for the monitoring and control of the individual drives. The integrated operation of IM and PMSM drives system has been analyzed under different operating conditions, and their performance has been monitored through supervisory control and data acquisition (SCADA) system. The necessary SCADA graphical user interface (GUI) has also been created for the display of drive parameters. The performances of IM and PMSM under parametric variations are predicted through sensitivity analysis. An integrated operation of the drives is demonstrated through experimental and simulation results.

2011 ◽  
Vol 328-330 ◽  
pp. 2023-2026
Author(s):  
Ying Xu ◽  
Tao Li

The oil-gas-water three-phase flow experimental apparatus in key laboratory of process monitoring and control in Tianjin University is a set of indoor small experimental device, which can simulate oil wells, simulate the pipeline transport of multiphase flow and study the experiment of multiphase flow. The device includes energy power dynamic systems, measurement pipelines systems, multiphase flow test pipelines system, control valves, sampling and control system platform. The software of the control system is mixed programming between the configuration software MCGS and the Visual Basic.


Author(s):  
Rahul S Joshi ◽  
Pritesh P Patil ◽  
Rushikesh N Dalavi ◽  
Abhilash C Patil ◽  
Sarthak K Joshi

Water ◽  
2019 ◽  
Vol 11 (7) ◽  
pp. 1346 ◽  
Author(s):  
Solé-Torres ◽  
Duran-Ros ◽  
Arbat ◽  
Pujol ◽  
Ramírez de Cartagena ◽  
...  

Microirrigation is an efficient irrigation technique, although when wastewater is used the probability of operation problems such as emitter clogging increases. In most of microirrigation systems, control of irrigation performance is manual and sporadic, therefore clogging problems may not be detected at the right time. As it is easier to prevent emitter clogging if it is detected earlier, close monitoring of pressure and flow rates in microirrigation systems is an important way to achieve microirrigation system requirements and accomplish higher irrigation efficiencies. A supervisory control and data acquisition (SCADA) system was used to monitor and control the performance of three microirrigation subunits; each one with four laterals, 90 m long with 226 emitters. The SCADA system monitored the pressure and flow across the irrigation laterals, and distribution uniformity coefficients were determined in real time, as they are indexes commonly used for evaluating drip irrigation systems. Results were compared with those experimentally obtained, showing a good correlation; although the emitter position had an important effect on the computed values. This work shows that a SCADA system can be easily used to continuously assess the pressure and water distribution uniformity without carrying out time-consuming manual field assessments.


Author(s):  
Teresa Escobet ◽  
Joseba Quevedo ◽  
Vicenç Puig ◽  
Fatiha Nejjari

This chapter proposes the combination of system health monitoring with control and prognosis creating a new paradigm, the health-aware control (HAC) of systems. In this paradigm, the information provided by the prognosis module about the component system health should allow the modification of the controller such that the control objectives will consider the system’s health. In this way, the control actions will be generated to fulfill the control objectives, and, at the same time, to extend the life of the system components. HAC control, contrarily to fault-tolerant control (FTC), adjusts the controller even when the system is still in a non-faulty situation. The prognosis module, with the main feature system characteristics provided by condition monitoring, will estimate on-line the component aging for the specific operating conditions. In the non-faulty situation, the control efforts are distributed to the system based on the proposed health indicator. An example is used throughout the chapter to illustrate the ideas and concepts introduced.


2012 ◽  
Vol 141 (1) ◽  
pp. 153-157 ◽  
Author(s):  
J. TEO ◽  
T. Y. TAN ◽  
P. Y. HON ◽  
W. LEE ◽  
T. H. KOH ◽  
...  

SUMMARYSurveillance is integral for the monitoring and control of infectious diseases. We conducted prospective laboratory surveillance of methicillin-resistantStaphylococcus aureus(MRSA) in five Singaporean public-sector hospitals from 2006 to 2010, using WHONET 5.6 for data compilation and analysis. Molecular profiling using multilocus variable-number tandem-repeat analysis, staphylococcal cassette chromosomemecclassification and multilocus sequence typing was performed for a random selection of isolates. Our results showed overall stable rates of infection and bacteraemia, although there was significant variance among the individual hospitals, with MRSA rates increasing in two smaller hospitals and showing a trend towards decreasing in the two largest hospitals. The proportion of blood isolates that are EMRSA-15 (ST22-IV) continued to increase over time, slowly replacing the multi-resistant ST239-III. A new MRSA clone – ST45-IV – is now responsible for a small subset of hospital infections locally. More effort is required in Singaporean hospitals in order to reduce the rates of MRSA infection significantly.


2020 ◽  
Vol 1 (1) ◽  
pp. 15-20
Author(s):  
Ta'ali Ta'ali ◽  
Fivia Eliza

The SCADA-based AC motor monitoring and control system is a three-phase induction motor monitoring and control system. Motor speed regulation feedback is obtained from the tacho generator which is connected to the pulleys. The SCADA program manages inverter and microcontroller communications so that the process of monitoring the speed of an induction motor is done through a computer. Induction motor speed regulation using VSD as an inverter functions to adjust the source frequency so that the motor speed can be adjusted. Communication between VSD, PLC and SCADA uses the MODBUS protocol to monitor the performance of the induction motor. The main equipment uses ATV12HU22M3 inverter and CQM1H PLC. The CX-Programmer and CIMON software function to manage and monitor in real time the system. The results of the induction motor settings can be adjusted with VSD speeds ranging from 0-50 Hz. PLC as master control and SCADA function as distance controller.


Sign in / Sign up

Export Citation Format

Share Document