scholarly journals A Compact RFID Reader Antenna for UHF Near-Field and Far-Field Operations

2013 ◽  
Vol 2013 ◽  
pp. 1-5 ◽  
Author(s):  
Lai Xiao zheng ◽  
Xie Zeming ◽  
Cen Xuanliang

A compact loop antenna is presented for mobile ultrahigh frequency (UHF) radio frequency identification (RFID) application. This antenna, printed on a 0.8 mm thick FR4 substrate with a small size of 31 mm × 31 mm, achieves good impedance bandwidth from 897 to 928 MHz, which covers USA RFID Band (902–928 MHz). The proposed loop configuration, with a split-ring resonator (SRR) coupled inside it, demonstrates strong and uniform magnetic field distribution in the near-field antenna region. Its linearly polarized radiation pattern provides available far-field gain. Finally, the reading capabilities of antenna are up to 56 mm for near-field and 1.05 m for far-field UHF RFID operations, respectively.

2013 ◽  
Vol 2013 ◽  
pp. 1-10 ◽  
Author(s):  
Luca Catarinucci ◽  
Riccardo Colella ◽  
Luca Mainetti ◽  
Vincenzo Mighali ◽  
Luigi Patrono ◽  
...  

Radio frequency identification (RFID) technology is more and more adopted in a wide range of applicative scenarios. In many cases, such as the tracking of small-size living animals for behaviour analysis purposes, the straightforward use of commercial solutions does not ensure adequate performance. Consequently, both RFID hardware and the control software should be tailored for the particular application. In this work, a novel RFID-based approach enabling an effective localization and tracking of small-sized laboratory animals is proposed. It is mainly based on a UHF Near Field RFID multiantenna system, to be placed under the animals’ cage, and able to rigorously identify the NF RFID tags implanted in laboratory animals (e.g., mice). Once the requirements of the reader antenna have been individuated, the antenna system has been designed and realized. Moreover, an algorithm based on the measured Received Signal Strength Indication (RSSI) aiming at removing potential ambiguities in data captured by the multiantenna system has been developed and integrated. The animal tracking system has been largely tested on phantom mice in order to verify its ability to precisely localize each subject and to reconstruct its path. The achieved and discussed results demonstrate the effectiveness of the proposed tracking system.


2013 ◽  
Vol 9 (1) ◽  
pp. 4 ◽  
Author(s):  
Luca Catarinucci ◽  
Luigi Patrono

The adoption of solutions based on Radio Frequency IDentification technology in a wide range of contexts is a matter of fact. In many situations, such as the tracking of small-size living animals, the straightforward use of commercial systems does not ensure adequate performance. Consequently, both the RFID hardware and the software control platform should be tailored for the particular application. In this work, the specific requirements of Near Field Ultra High Frequency RFID reader antennas suitable for small-size animal localization and tracking are identified and a control system in a LabVIEW environment is designed. Afterwards, both hardware and software solutions have been implemented and validated. In particular, an algorithm based on the measured Received Signal Strength Indication, in order to obtain precise localization data, was developed and validated. Finally, the set-up of a first working prototype involving built-in-lab reader antennas has been completed and tested. The achieved results prove the effectiveness of the proposed tracking system.


2020 ◽  
Vol 2020 ◽  
pp. 1-11
Author(s):  
Ji S. Jung ◽  
Jung N. Lee ◽  
Joung M. Kim ◽  
Jong K. Park

A radio frequency identification reader antenna having multitag identification for medical systems is presented, which consists of four PIFAs, two hybrid couplers, and four power dividers. The high isolation is achieved by the symmetric design of the antenna geometry and four power dividers, which are fed by two hybrid couplers. The experimental results show an isolation of more than 40 dB in the North American (902–928 MHz), Korean (917–923.5 MHz), and Japanese (916.7–923.5 MHz) RFID frequency bands.


2019 ◽  
Vol 2019 ◽  
pp. 1-9 ◽  
Author(s):  
Waleed Abdelrahim Ahmed ◽  
Feng Quanyuan

This study presents a novel compact circularly polarized antenna for universal ultrahigh-frequency (UHF) radio-frequency identification (RFID) handheld reader applications. The antenna is composed of a coplanar waveguide (CPW) L-shaped feedline mounted at the right edge of the square slot at the bottom of the ground plane to realize a circular polarization; a horizontal stub protruded from the right side of the square slot towards the slot centre, and a vertical stub is mounted at the lower left of the square slot. The designed antenna printed on one ground plane layer of a low-cost FR4 substrate with an overall size of 120×120×1.6 mm3. The measurement results show indicate that the fabricated antenna achieves a wide axial ratio (AR) bandwidth of 460 MHz (818–1278 MHz), wide impedance bandwidth of 54.6% (630–1103 MHz), and a measured peak gain of 4.0 dBi. The proposed antenna is a good candidate for compact universal UHF RFID handheld reader applications (840–960 MHz).


2018 ◽  
Vol 7 (5) ◽  
pp. 94-100 ◽  
Author(s):  
S. Pandey ◽  
G. P. Pandey ◽  
P. M. Sarum

A compact, square shaped microstrip fractal antenna with asymmetrical pairs of T-slits for circularly polarized (CP) radiation and radio frequency identification (RFID) reader applications is proposed and experimentally investigated. Design is based on narrow slit modified Minkowski island fractal geometry. Circular polarization along with size reduction is achieved by inserting four symmetrical pairs of T-slits at the square patch boundary of the single-probe-feed radiator. Proposed geometry is tuned at resonant frequency of 914 MHz by optimization of dimensions of the two T-slits. Compactness of the antenna is achieved by increasing the overall sizes of the slits. Antenna is fabricated on FR4 substrate with a size of 47.2×47.2×1.6 mm3 (0.143λ0 X 0.143λ0 X 0.005λ0) and tested to validate the simulated results. The 3-dB axial-ratio (AR) bandwidth and impedance bandwidth of the proposed antenna design are found to be 7 MHz (911-918 MHz) and 24 MHz (909-933 MHz) respectively. A design equation is develped based on the parametric study that can be used to design a compact antenna with CP for UHF RFID applications covering the frequency range from 887 to 1023 MHz.


2012 ◽  
Vol 10 ◽  
pp. 119-125 ◽  
Author(s):  
T. Nick ◽  
J. Götze

Abstract. Localization via Radio Frequency Identification (RFID) is frequently used in different applications nowadays. It has the advantage that next to its ostensible purpose of identifying objects via their unique IDs it can simultaneously be used for the localization of these objects. In this work it is shown how Received Signal Strength Indicator (RSSI) measurements at different antennae of a passive UHF RFID label can be combined for localization. The localization is only done based on the RSSI measurements and a Kalman Filter (KF). Because of non-linearities in the measurement function it is necessary to incorporate an Extended Kalman Filter (EKF) or an Unscented Kalman Filter (UKF) where simulations have shown that the UKF performs better than the EKF. Additionally to the selection of the filter there are different possibilities to increase the localization accuracy of the UKF: The advantages of using Reference Tags (RT) or more than one tag per trolley (relative positioning) in combination with an Unscented Kalman Filter are discussed and simulations results show that the localization error can be decreased significantly via these methods. Another possibility to increase the localization accuracy and in addition to achieve a more realistic simulation is the consideration of the angle between reader antenna and tag. Simulation results with the incorporation of different numbers of fixed antennae lead to the conclusion that this is a useful surplus in the localization.


Electronics ◽  
2021 ◽  
Vol 10 (13) ◽  
pp. 1603
Author(s):  
Abubakar Sharif ◽  
Yi Yan ◽  
Jun Ouyang ◽  
Hassan Tariq Chattha ◽  
Kamran Arshad ◽  
...  

This paper presents a novel inkjet-printed near-field ultra-high-frequency (UHF) radio frequency identification (RFID) tag/sensor design with uniform magnetic field characteristics. The proposed tag is designed using the theory of characteristics mode (TCM). Moreover, the uniformity of current and magnetic field performance is achieved by further optimizing the design using particle swarm optimization (PSO). Compared to traditional electrically small near-field tags, this tag uses the logarithmic spiral as the radiating structure. The benefit of the logarithmic spiral structure lies in its magnetic field receiving area that can be extended to reach a higher reading distance. The combination of TCM and PSO is used to get the uniform magnetic field and desired resonant frequency. Moreover, the PSO was exploited to get a uniform magnetic field in the horizontal plane of the normal phase of the UHF RFID near-field reader antenna. As compared with the frequently-used commercial near field tag (Impinj J41), our design can be readable up to a three times greater read distance. Furthermore, the proposed near-field tag design shows great potential for commercial item-level tagging of expensive jewelry products and sensing applications, such as temperature monitoring of the human body.


2014 ◽  
Vol 2014 ◽  
pp. 1-5 ◽  
Author(s):  
Yuan Yao ◽  
Junsheng Yu ◽  
Xiaodong Chen

A study on the optically transparent RFID reader antenna which can operate in both near-field and far-field is proposed in this paper. The antenna with a dimension of 45 mm × 45 mm is fabricated using Indium tin oxide film and can operate from 915 to 935 MHz covering the China UHF RFID band. The strong and uniform magnetic field is excited by magnetic dipole source. Both simulation and measurement results are shown to illustrate the performance of the proposed antenna. The measured reading distances are up to 40 mm and 100 mm for near-field and far-field applications, respectively.


2017 ◽  
Vol 65 (9) ◽  
pp. 4869-4874 ◽  
Author(s):  
Yuan Yao ◽  
Yishan Liang ◽  
Junsheng Yu ◽  
Xiaodong Chen

Sign in / Sign up

Export Citation Format

Share Document