scholarly journals Near Field UHF RFID Antenna System Enabling the Tracking of Small Laboratory Animals

2013 ◽  
Vol 2013 ◽  
pp. 1-10 ◽  
Author(s):  
Luca Catarinucci ◽  
Riccardo Colella ◽  
Luca Mainetti ◽  
Vincenzo Mighali ◽  
Luigi Patrono ◽  
...  

Radio frequency identification (RFID) technology is more and more adopted in a wide range of applicative scenarios. In many cases, such as the tracking of small-size living animals for behaviour analysis purposes, the straightforward use of commercial solutions does not ensure adequate performance. Consequently, both RFID hardware and the control software should be tailored for the particular application. In this work, a novel RFID-based approach enabling an effective localization and tracking of small-sized laboratory animals is proposed. It is mainly based on a UHF Near Field RFID multiantenna system, to be placed under the animals’ cage, and able to rigorously identify the NF RFID tags implanted in laboratory animals (e.g., mice). Once the requirements of the reader antenna have been individuated, the antenna system has been designed and realized. Moreover, an algorithm based on the measured Received Signal Strength Indication (RSSI) aiming at removing potential ambiguities in data captured by the multiantenna system has been developed and integrated. The animal tracking system has been largely tested on phantom mice in order to verify its ability to precisely localize each subject and to reconstruct its path. The achieved and discussed results demonstrate the effectiveness of the proposed tracking system.

2013 ◽  
Vol 9 (1) ◽  
pp. 4 ◽  
Author(s):  
Luca Catarinucci ◽  
Luigi Patrono

The adoption of solutions based on Radio Frequency IDentification technology in a wide range of contexts is a matter of fact. In many situations, such as the tracking of small-size living animals, the straightforward use of commercial systems does not ensure adequate performance. Consequently, both the RFID hardware and the software control platform should be tailored for the particular application. In this work, the specific requirements of Near Field Ultra High Frequency RFID reader antennas suitable for small-size animal localization and tracking are identified and a control system in a LabVIEW environment is designed. Afterwards, both hardware and software solutions have been implemented and validated. In particular, an algorithm based on the measured Received Signal Strength Indication, in order to obtain precise localization data, was developed and validated. Finally, the set-up of a first working prototype involving built-in-lab reader antennas has been completed and tested. The achieved results prove the effectiveness of the proposed tracking system.


2013 ◽  
Vol 2013 ◽  
pp. 1-5 ◽  
Author(s):  
Lai Xiao zheng ◽  
Xie Zeming ◽  
Cen Xuanliang

A compact loop antenna is presented for mobile ultrahigh frequency (UHF) radio frequency identification (RFID) application. This antenna, printed on a 0.8 mm thick FR4 substrate with a small size of 31 mm × 31 mm, achieves good impedance bandwidth from 897 to 928 MHz, which covers USA RFID Band (902–928 MHz). The proposed loop configuration, with a split-ring resonator (SRR) coupled inside it, demonstrates strong and uniform magnetic field distribution in the near-field antenna region. Its linearly polarized radiation pattern provides available far-field gain. Finally, the reading capabilities of antenna are up to 56 mm for near-field and 1.05 m for far-field UHF RFID operations, respectively.


Sensors ◽  
2018 ◽  
Vol 18 (11) ◽  
pp. 3746 ◽  
Author(s):  
Antonio Lazaro ◽  
Ramon Villarino ◽  
David Girbau

In this article, an overview of recent advances in the field of battery-less near-field communication (NFC) sensors is provided, along with a brief comparison of other short-range radio-frequency identification (RFID) technologies. After reviewing power transfer using NFC, recommendations are made for the practical design of NFC-based tags and NFC readers. A list of commercial NFC integrated circuits with energy-harvesting capabilities is also provided. Finally, a survey of the state of the art in NFC-based sensors is presented, which demonstrates that a wide range of sensors (both chemical and physical) can be used with this technology. Particular interest arose in wearable sensors and cold-chain traceability applications. The availability of low-cost devices and the incorporation of NFC readers into most current mobile phones make NFC technology key to the development of green Internet of Things (IoT) applications.


2020 ◽  
Vol 2020 ◽  
pp. 1-11
Author(s):  
Ji S. Jung ◽  
Jung N. Lee ◽  
Joung M. Kim ◽  
Jong K. Park

A radio frequency identification reader antenna having multitag identification for medical systems is presented, which consists of four PIFAs, two hybrid couplers, and four power dividers. The high isolation is achieved by the symmetric design of the antenna geometry and four power dividers, which are fed by two hybrid couplers. The experimental results show an isolation of more than 40 dB in the North American (902–928 MHz), Korean (917–923.5 MHz), and Japanese (916.7–923.5 MHz) RFID frequency bands.


2012 ◽  
Vol 10 ◽  
pp. 119-125 ◽  
Author(s):  
T. Nick ◽  
J. Götze

Abstract. Localization via Radio Frequency Identification (RFID) is frequently used in different applications nowadays. It has the advantage that next to its ostensible purpose of identifying objects via their unique IDs it can simultaneously be used for the localization of these objects. In this work it is shown how Received Signal Strength Indicator (RSSI) measurements at different antennae of a passive UHF RFID label can be combined for localization. The localization is only done based on the RSSI measurements and a Kalman Filter (KF). Because of non-linearities in the measurement function it is necessary to incorporate an Extended Kalman Filter (EKF) or an Unscented Kalman Filter (UKF) where simulations have shown that the UKF performs better than the EKF. Additionally to the selection of the filter there are different possibilities to increase the localization accuracy of the UKF: The advantages of using Reference Tags (RT) or more than one tag per trolley (relative positioning) in combination with an Unscented Kalman Filter are discussed and simulations results show that the localization error can be decreased significantly via these methods. Another possibility to increase the localization accuracy and in addition to achieve a more realistic simulation is the consideration of the angle between reader antenna and tag. Simulation results with the incorporation of different numbers of fixed antennae lead to the conclusion that this is a useful surplus in the localization.


Electronics ◽  
2021 ◽  
Vol 10 (13) ◽  
pp. 1603
Author(s):  
Abubakar Sharif ◽  
Yi Yan ◽  
Jun Ouyang ◽  
Hassan Tariq Chattha ◽  
Kamran Arshad ◽  
...  

This paper presents a novel inkjet-printed near-field ultra-high-frequency (UHF) radio frequency identification (RFID) tag/sensor design with uniform magnetic field characteristics. The proposed tag is designed using the theory of characteristics mode (TCM). Moreover, the uniformity of current and magnetic field performance is achieved by further optimizing the design using particle swarm optimization (PSO). Compared to traditional electrically small near-field tags, this tag uses the logarithmic spiral as the radiating structure. The benefit of the logarithmic spiral structure lies in its magnetic field receiving area that can be extended to reach a higher reading distance. The combination of TCM and PSO is used to get the uniform magnetic field and desired resonant frequency. Moreover, the PSO was exploited to get a uniform magnetic field in the horizontal plane of the normal phase of the UHF RFID near-field reader antenna. As compared with the frequently-used commercial near field tag (Impinj J41), our design can be readable up to a three times greater read distance. Furthermore, the proposed near-field tag design shows great potential for commercial item-level tagging of expensive jewelry products and sensing applications, such as temperature monitoring of the human body.


Author(s):  
Ahoud Rashid Khalfan Al Tarshia ◽  
Nouf Salem Issa Al Sadia ◽  
Viswan Vimbia

Technologies played an important role in developing the way of living life in terms of making it more easer and flexible than the past. One of the technologies in prominence is RFID which stands for “Radio-Frequency Identification”. RFID uses electromagnetic fields to transfer data that can automate identity and track using tags.  This technology has been widely used in IT Asset Tracking, Logistics, Real Time Location Systems, Library systems and many more including Attendance Management in schools and colleges.  Internet of Things (IoT) is considered as a technology that monitors the status of physical objects, capture meaningful data and communicate them through internet to software applications.  The advancement in 4G and 5G technologies have accelerated the use of IoT and for instance with RFID wearable devices in collecting data wirelessly and sending them to software applications for better decision making. This project proposes a smart Attendance Tracking system using RFID and IoT for tracking attendance of students in classrooms.  The project proposes to eradicate the time consuming, insecure and inefficient way of attendance tracking by calling names or signing on paper.  A common way of attendance tracking with RFID is with the biometric system. However, this project proposes a protype using RFID and IoT with cloud-based applications that reduces IT support, decreases costs and builds intelligence to RFID tags.  The prototype experiments with Ultra High Frequency RFID cards in association with Arduino Raspberry Pi microcontrollers and Microsoft Azure for cloud-based app and data storage.  The software recognizes the student through the information on the UHF RFID smart card for recording attendance.  Besides sending SMS or email to stakeholders confirming their presence in the class the prototype also uses built-in intelligence that informs about class timings, venue and cautioning late arrivals.  The data obtained wirelessly from RFID cards can be analysed and provide the organization with information related measuring attendance at sessions, demographic visibility, engagement metrics, duration spent in seminars or events and understand interests and preferences. The project accentuates the role of RFID and IoT in enhancing the smart attendance system.


Sensors ◽  
2020 ◽  
Vol 20 (17) ◽  
pp. 4957
Author(s):  
Paolo Barge ◽  
Alessandro Biglia ◽  
Lorenzo Comba ◽  
Davide Ricauda Aimonino ◽  
Cristina Tortia ◽  
...  

Digitalised supply-chain traceability systems can offer wide prospects both for improving safety as well as enhancing perceived quality. However, the coupling between physical goods and information is often difficult for agri-food items. A solution could be the use of RFID (Radio Frequency IDentification) systems. Due to its wide reading range, Ultra-High Frequency (UHF) technology is already widely used in logistics and warehousing, mostly for the identification of batches of items. A growing interest is also emerging in Near Field Communication (NFC), as several smartphones embed an integrated NFC antenna. This paper deals with the automatic identification of meat products at item level, proposing and evaluating the adoption of different RFID technologies. Different UHF and NFC solutions are proposed, which benchmark tag performances in different configurations, including four meat types (fatty beef, lean beef, chicken and pork), by using a specifically designed test bench. As avoiding the application of two different tags could be advantageous, dual frequency devices (UHF and NFC) are also considered. Significant differences in tag performances, which also depend on meat type and packaging, are highlighted. The paper highlights that tag positioning should consider the geometry of the packaging and the relative positioning of tag, meat and reader antenna.


This study conducted to compare a read range performance of microstrip patch reader antenna for UHF Radio Frequency Identification (RFID) applications. The circularly polarized reader antenna described in this study are designed to be affixed the polarization mismatch problem between reader antenna and tag antenna. Two truncated at the corner of the ordinary rectangular patch antenna is designed for UHF band (919-923 MHz) which destined for Malaysian systems. Measured results show that the antenna with size of 115*115*1.6 mm have gain antenna of 5.3 dBi, satisfactory 3-dB axial-ratio and reading range of 2m. Read range measurement results of the reader antenna design and tags antenna with the reader are observed and analysed to validate the practical performance. The reader antenna design delivered in this study areappropriate to UHF RFID applications.


Sign in / Sign up

Export Citation Format

Share Document