scholarly journals Localization of passive UHF RFID Labels with Kalman Filter

2012 ◽  
Vol 10 ◽  
pp. 119-125 ◽  
Author(s):  
T. Nick ◽  
J. Götze

Abstract. Localization via Radio Frequency Identification (RFID) is frequently used in different applications nowadays. It has the advantage that next to its ostensible purpose of identifying objects via their unique IDs it can simultaneously be used for the localization of these objects. In this work it is shown how Received Signal Strength Indicator (RSSI) measurements at different antennae of a passive UHF RFID label can be combined for localization. The localization is only done based on the RSSI measurements and a Kalman Filter (KF). Because of non-linearities in the measurement function it is necessary to incorporate an Extended Kalman Filter (EKF) or an Unscented Kalman Filter (UKF) where simulations have shown that the UKF performs better than the EKF. Additionally to the selection of the filter there are different possibilities to increase the localization accuracy of the UKF: The advantages of using Reference Tags (RT) or more than one tag per trolley (relative positioning) in combination with an Unscented Kalman Filter are discussed and simulations results show that the localization error can be decreased significantly via these methods. Another possibility to increase the localization accuracy and in addition to achieve a more realistic simulation is the consideration of the angle between reader antenna and tag. Simulation results with the incorporation of different numbers of fixed antennae lead to the conclusion that this is a useful surplus in the localization.

2013 ◽  
Vol 5 (5) ◽  
pp. 645-651 ◽  
Author(s):  
Y. Duroc ◽  
G. Andia Vera ◽  
J. P. Garcia Martin

This paper presents a new approach for improving the localization of passive ultra high frequency radio frequency identification (RFID) tags in line-of-sight channels using a received signal strength indicator (RSSI) technique. In practice, the complex propagation in the indoor channels and also the variability of some parameters of the RFID equipment itself introduces significant amount of errors when the operation of localization carries out the RSSI technique. Indeed, as the calculation is based on a trilateration, the incomplete knowledge of the propagation and some parameters of RFID tags leads to estimate distances which are wrong, and therefore the localization cannot be correct. In order to overcome this drawback, the proposed method takes into account the presence of unknown parameters relying on a dichotomous algorithm which includes probabilistic parameters. The presented simulation results are in good agreement with the expected theoretical results. Experimental results show that the proposed method strongly increases the accuracy of the estimated position of tags. Compared to other approaches based on the improvement of the RSSI technique, this method does not require too much complexity in terms of materials (no need for specific architecture or reference tags) and processing (fast and simple algorithm).


2018 ◽  
Vol 14 (4) ◽  
pp. 155014771877128 ◽  
Author(s):  
Jinkai Liu ◽  
Yanqing Qiu ◽  
Kezhao Yin ◽  
Wentong Dong ◽  
Jiaqing Luo

The radio frequency identification technology was given greater interest as it is widely used for identification and localization in the cognitive radio sensor networks. While radio frequency identification–based indoor localization is attractive, the need for a large-scale and high-density deployment of readers and reference tags is costly. Using mobile readers mounted on guide rails, we design and implement an RFID indoor localization system, which requires neither reference tags nor received signal strength indicator functions, for stock-taking and searching in warehouse operations. In particular, we install two guide rails, which can allow a reader to move horizontally or vertically, on the ceiling of a warehouse or workshop. We then propose a continuous scanning algorithm to improve the accuracy for locating a single tagged object and a category-based scheduling algorithm to shorten the time for locating multiple tagged objects. Our primary experimental results show that RFID indoor localization system can achieve high time efficiency and localization accuracy in the indoor localization.


2020 ◽  
Vol 2020 ◽  
pp. 1-11
Author(s):  
Ji S. Jung ◽  
Jung N. Lee ◽  
Joung M. Kim ◽  
Jong K. Park

A radio frequency identification reader antenna having multitag identification for medical systems is presented, which consists of four PIFAs, two hybrid couplers, and four power dividers. The high isolation is achieved by the symmetric design of the antenna geometry and four power dividers, which are fed by two hybrid couplers. The experimental results show an isolation of more than 40 dB in the North American (902–928 MHz), Korean (917–923.5 MHz), and Japanese (916.7–923.5 MHz) RFID frequency bands.


Author(s):  
Zhou Yi ◽  
Zi Qin Phua ◽  
Vitor N. B. Rangel ◽  
Johné M. Parker

Recently, the Internet of things (IoT) has emerged as a promising solution for several industrial applications. One of the key components in IoT is passive radio frequency identification (RFID) tags which do not require a power source for operations. Specifically, ultra-high frequency (UHF) tags are studied in this paper. However, due to factors such as tag-to-tag interference and inaccurate localization, RFID tags that are closely spaced together are difficult to detect and program accurately with unique identifiers. This paper investigates several factors that affect the ability to encode a specific tag with unique information in the presence of other tags, such as reader power level, tag-to-antenna distance, tag-to-tag distance and tag orientation. ANOVA results report reader power level and tag spacing, along with effect interactions power level*tag space and tag space*tag orientation to be significant at the levels investigated. Results further suggest a preliminary minimum tag-to-tag spacing which enables the maximum number of tagged items to be uniquely encoded without interference. This finding can significantly speed up the process of field programming in item-level tagging.


2017 ◽  
Vol 2017 ◽  
pp. 1-8 ◽  
Author(s):  
M. Akbari ◽  
H. He ◽  
J. Juuti ◽  
M. M. Tentzeris ◽  
J. Virkki ◽  
...  

This paper introduces 3D direct writing and microdispensing of graphene ultrahigh frequency (UHF) radio-frequency-identification (RFID) antennas on textile, wood, and cardboard substrates, subsequently cured either by conventional oven or photonically by pulsed Xenon flashes. Photonic-cured passive UHF RFID graphene tags on cardboard, wood, and textile substrates achieve read ranges of 5.4, 4.6, and 4 meters, respectively. These results are superior to those achieved by the oven-cured tags that featured read ranges of 4.8, 4.5, and 3.6 meters, respectively. This work presents the first integration of 3D printing and photonic curing of graphene antennas on low-cost versatile substrates.


This study conducted to compare a read range performance of microstrip patch reader antenna for UHF Radio Frequency Identification (RFID) applications. The circularly polarized reader antenna described in this study are designed to be affixed the polarization mismatch problem between reader antenna and tag antenna. Two truncated at the corner of the ordinary rectangular patch antenna is designed for UHF band (919-923 MHz) which destined for Malaysian systems. Measured results show that the antenna with size of 115*115*1.6 mm have gain antenna of 5.3 dBi, satisfactory 3-dB axial-ratio and reading range of 2m. Read range measurement results of the reader antenna design and tags antenna with the reader are observed and analysed to validate the practical performance. The reader antenna design delivered in this study areappropriate to UHF RFID applications.


The Radio Frequency Identification (RFID) technology has been increasingly used for various application such as tracking of products, smart cards, identification, item management, security etc. In this paper, the performance parameter of the passive UHF RFID tag antenna has been studied for four different substrate materials viz., FR4 epoxy, PET, Rogers 4350, Taconic TLY materials. A simple meandered dipole antenna has been designed using a T-match stub for impedance matching of the tag antenna with the attached RFID chip. These different substrates are then designed separately, for the same antenna geometry. The effect of using these substrates on RFID tag antenna parameters such as reflection coefficient, antenna gain, VWSR, radiation pattern, impedance, ease of optimization level, read range, and radiation efficiency are then observed.


2014 ◽  
Vol 1 (2) ◽  
pp. 65-74 ◽  
Author(s):  
Gianfranco Andia Vera ◽  
Yvan Duroc ◽  
Smail Tedjini

This paper discusses novel methodologies for the characterization of harmonic signals generated by wireless powered devices, i.e. passive ultra-high frequency (UHF) radio frequency identification (RFID) tags, due to the wireless power transferred from reader to tag. Theoretical aspects, as well as measurements to characterize these non-linear phenomena are exposed. Particular care is taken to explain the analysis methodology and setup for two kinds of characterization measurements: radiated and conducted. The existence of harmonic signals carrying information is exploited in an advanced application example. A dual-band RFID tag is designed to increase the backscattered harmonic level in the tag-to-reader link. Measurement of this dual band tag demonstrates the exploitation of the hitherto neglected harmonic power; it also opens the door to more advanced applications exploiting the harmonic-link communication.


Sensors ◽  
2021 ◽  
Vol 21 (15) ◽  
pp. 5183
Author(s):  
Andrea Motroni ◽  
Alice Buffi ◽  
Paolo Nepa ◽  
Mario Pesi ◽  
Antonio Congi

The I-READ 4.0 project is aimed at developing an integrated and autonomous Cyber-Physical System for automatic management of very large warehouses with a high-stock rotation index. Thanks to a network of Radio Frequency Identification (RFID) readers operating in the Ultra-High-Frequency (UHF) band, both fixed and mobile, it is possible to implement an efficient management of assets and forklifts operating in an indoor scenario. A key component to accomplish this goal is the UHF-RFID Smart Gate, which consists of a checkpoint infrastructure based on RFID technology to identify forklifts and their direction of transit. This paper presents the implementation of a UHF-RFID Smart Gate with a single reader antenna with asymmetrical deployment, thus allowing the correct action classification with reduced infrastructure complexity and cost. The action classification method exploits the signal phase backscattered by RFID tags placed on the forklifts. The performance and the method capabilities are demonstrated through an on-site demonstrator in a real warehouse.


Sign in / Sign up

Export Citation Format

Share Document