scholarly journals Neurocognitive Basis of Schizophrenia: Information Processing Abnormalities and Clues for Treatment

2014 ◽  
Vol 2014 ◽  
pp. 1-15 ◽  
Author(s):  
André Aleman

Schizophrenia is a chronic and severe psychiatric disorder that affects all aspects of patients’ lives. Over the past decades, research applying methods from psychology and neuroscience has increasingly been zooming in on specific information processing abnormalities in schizophrenia. Impaired activation of and connectivity between frontotemporal, frontoparietal, and frontostriatal brain networks subserving cognitive functioning and integration of cognition and emotion has been consistently reported. Major issues in schizophrenia research concern the cognitive and neural basis of hallucinations, abnormalities in cognitive-emotional processing, social cognition (including theory of mind), poor awareness of illness, and apathy. Recent findings from cognitive neuroscience studies in these areas are discussed. The findings may have implications for treatment, for example, noninvasive neurostimulation of specific brain areas. Ultimately, a better understanding of the cognitive neuroscience of schizophrenia will pave the way for the development of effective treatment strategies.

Author(s):  
Lauren Stewart ◽  
Katharina von Kriegstein ◽  
Simone Dalla Bella ◽  
Jason D. Warren ◽  
Timothy D. Griffiths

This article presents an overview of case studies of acquired disorders of musical listening. Like any cognitive faculty, music is multifaceted, and the identification of the neural basis of any complex faculty must proceed, hand in hand, with an elucidation of its cognitive architecture. The past decade has seen an evolution in the theoretical models of musical processing, allowing the development of theoretically motivated instruments for the systematic evaluation of musical disorders. Such developments have allowed reports of musical disorders to evolve from historical anecdotes to systematic, verifiable accounts that can play a critical role in contributing to our understanding of the cognitive neuroscience of music.


2008 ◽  
Vol 20 (4) ◽  
pp. 1053-1080 ◽  
Author(s):  
Jean Decety ◽  
Meghan Meyer

AbstractThe psychological construct of empathy refers to an intersubjective induction process by which positive and negative emotions are shared, without losing sight of whose feelings belong to whom. Empathy can lead to personal distress or to empathic concern (sympathy). The goal of this paper is to address the underlying cognitive processes and their neural underpinnings that constitute empathy within a developmental neuroscience perspective. In addition, we focus on how these processes go awry in developmental disorders marked by impairments in social cognition, such as autism spectrum disorder, and conduct disorder. We argue that empathy involves both bottom-up and top-down information processing, underpinned by specific and interacting neural systems. We discuss data from developmental psychology as well as cognitive neuroscience in support of such a model, and highlight the impact of neural dysfunctions on social cognitive developmental behavior. Altogether, bridging developmental science and cognitive neuroscience helps approach a more complete understanding of social cognition. Synthesizing these two domains also contributes to a better characterization of developmental psychopathologies that impacts the development of effective treatment strategies.


2022 ◽  
Vol 11 (2) ◽  
pp. 448
Author(s):  
Julia Maruani ◽  
Pierre A. Geoffroy

Light exerts powerful biological effects on mood regulation. Whereas the source of photic information affecting mood is well established at least via intrinsically photosensitive retinal ganglion cells (ipRGCs) secreting the melanopsin photopigment, the precise circuits that mediate the impact of light on depressive behaviors are not well understood. This review proposes two distinct retina–brain pathways of light effects on mood: (i) a suprachiasmatic nucleus (SCN)-dependent pathway with light effect on mood via the synchronization of biological rhythms, and (ii) a SCN-independent pathway with light effects on mood through modulation of the homeostatic process of sleep, alertness and emotion regulation: (1) light directly inhibits brain areas promoting sleep such as the ventrolateral preoptic nucleus (VLPO), and activates numerous brain areas involved in alertness such as, monoaminergic areas, thalamic regions and hypothalamic regions including orexin areas; (2) moreover, light seems to modulate mood through orexin-, serotonin- and dopamine-dependent pathways; (3) in addition, light activates brain emotional processing areas including the amygdala, the nucleus accumbens, the perihabenular nucleus, the left hippocampus and pathways such as the retina–ventral lateral geniculate nucleus and intergeniculate leaflet–lateral habenula pathway. This work synthetizes new insights into the neural basis required for light influence mood


Author(s):  
John R. Hodges

This chapter discusses cognitive functions with a largely distributed neural basis within the framework of contemporary cognitive neuroscience. The following are described: arousal/attention, memory (short-term, or working memory; episodic memory; semantic memory; and implicit memory), and higher-order cognitive function such as planning, problem-solving and set-shifting, motivation, inhibitory control, social cognition, and emotion processing. Each function in placed in the context of its neural basis, with a brief description of the disorders that may affect these cognitive abilities. Methods of assessment at the bedside and by using neuropsychological tasks are also outlined.


Author(s):  
Patricia L Lockwood ◽  
Miriam C Klein-Flügge

Abstract Social neuroscience aims to describe the neural systems that underpin social cognition and behaviour. Over the past decade, researchers have begun to combine computational models with neuroimaging to link social computations to the brain. Inspired by approaches from reinforcement learning theory, which describes how decisions are driven by the unexpectedness of outcomes, accounts of the neural basis of prosocial learning, observational learning, mentalizing and impression formation have been developed. Here we provide an introduction for researchers who wish to use these models in their studies. We consider both theoretical and practical issues related to their implementation, with a focus on specific examples from the field.


2019 ◽  
Vol 5 (1) ◽  
pp. 373-397 ◽  
Author(s):  
Russell A. Epstein ◽  
Chris I. Baker

Humans are remarkably adept at perceiving and understanding complex real-world scenes. Uncovering the neural basis of this ability is an important goal of vision science. Neuroimaging studies have identified three cortical regions that respond selectively to scenes: parahippocampal place area, retrosplenial complex/medial place area, and occipital place area. Here, we review what is known about the visual and functional properties of these brain areas. Scene-selective regions exhibit retinotopic properties and sensitivity to low-level visual features that are characteristic of scenes. They also mediate higher-level representations of layout, objects, and surface properties that allow individual scenes to be recognized and their spatial structure ascertained. Challenges for the future include developing computational models of information processing in scene regions, investigating how these regions support scene perception under ecologically realistic conditions, and understanding how they operate in the context of larger brain networks.


2019 ◽  
Author(s):  
Patricia Lockwood ◽  
Miriam Klein-Flugge

Social neuroscience aims to describe the neural systems that underpin social cognition and behaviour. Over the past decade, researchers have begun to combine computational models with neuroimaging to link social computations to the brain. Inspired by approaches from reinforcement learning theory, which describes how decisions are driven by the unexpectedness of outcomes, accounts of the neural basis of prosocial learning, observational learning, mentalising and impression formation have been developed. Here we provide an introduction for researchers who wish to use these models in their studies. We consider both theoretical and practical issues related to their implementation, with a focus on specific examples from the field.


2020 ◽  
Author(s):  
Luis Sebastian Contreras-Huerta ◽  
M. Andrea Pisauro ◽  
Matthew A J Apps

Theoretical accounts typically posit that variability in social behaviour is a function of capacity limits. We argue that many social behaviours are goal-directed and effortful, and thus variability is not just a function of capacity, but also motivation. Leveraging recent work examining the cognitive, computational and neural basis of effort processing, we put forward a framework for motivated social cognition. We argue that social cognition is demanding, people avoid its effort costs, and a core-circuit of brain areas that guides effort-based decisions in non-social situations may similarly evaluate whether social behaviours are worth the effort. Thus, effort sensitivity dissociates capacity limits from social motivation, and may be a driver of individual differences and pathological impairments in social cognition.


2008 ◽  
Vol 42 (11) ◽  
pp. 915-931 ◽  
Author(s):  
Maxwell R. Bennett Ao

Consciousness takes two forms, transitive and intransitive. Transitive consciousness is a matter of being conscious of something or other whereas intransitive consciousness has no object, as being conscious or awake. Of the different forms of transitive consciousness, perceptual, somatic, kinaesthetic and so on, cognitive neuroscience has concentrated on determining the neural concomitants of perceptual consciousness. To be conscious of a percept is to be aware of it and this requires attending to it. This work sets out a hypothesis as to what brain areas are involved in a schizophrenia subject attending and becoming aware of hallucinations. First, the different areas of cortex that support different visual and auditory illusions of percepts are considered. Next it is argued that endogenous activity in these areas of cortex give rise to hallucinations of percepts that are similar to the percepts that these same areas support during illusions. The basis of such endogenous activity, it is suggested, is to be found in the paucity of afferent synapses to these cortical areas. This may occur as a consequence of loss and regression of synapses due to a degenerative disease or because of abnormal synapse formation and regression during childhood and adolescence, as is likely to be the case in schizophrenia. Finally the neural basis of attention and awareness of these hallucinations are considered for subjects suffering from schizophrenia, and a set of important questions posed that await elucidation through future experimental studies.


2005 ◽  
Vol 17 (5) ◽  
pp. 800-810 ◽  
Author(s):  
Jason P. Mitchell ◽  
Chad S. Dodson ◽  
Daniel L. Schacter

Misattribution refers to the act of attributing a memory or idea to an incorrect source, such as successfully remembering a bit of information but linking it to an inappropriate person or time [Jacoby, L. L., Kelley, C., Brown, J., & Jasechko, J. (1989). Becoming famous overnight: Limits on the ability to avoid unconscious influences of the past. Journal of Personality and Social Psychology, 56, 326–338; Schacter, D. L. (1999). The seven sins of memory: Insights from psychology and cognitive neuroscience. American Psychologist, 54, 182–203; Schacter, D. L. (2001). The seven sins of memory: How the mind forgets and remembers. Boston: Houghton Mifflin]. Cognitive studies have suggested that misattribution errors may occur in the absence of recollection for the details of an initial encounter with a stimulus, but little is known about the neural basis of this memory phenomenon. Here we used functional magnetic resonance imaging (fMRI) to examine the hypothesized role of recollection in counteracting the illusory truth effect, a misattribution error whereby perceivers systematically overrate the truth of previously presented information. Imaging was conducted during the encoding and subsequent judgment of unfamiliar statements that were presented as true or false. Event-related fMRI analyses were conditionalized as a function of subsequent performance. Results demonstrated that encoding activation in regions previously associated with successful recollection—including the hippocampus and the ventrolateral prefrontal cortex (PFC)—correlated with the successful avoidance of misattribution errors, providing initial neuroimaging support for earlier cognitive accounts of misattribution.


Sign in / Sign up

Export Citation Format

Share Document