scholarly journals Dielectric Properties and Characterisation of Titanium Dioxide Obtained by Different Chemistry Methods

2014 ◽  
Vol 2014 ◽  
pp. 1-9 ◽  
Author(s):  
Aleksandra Wypych ◽  
Izabela Bobowska ◽  
Milena Tracz ◽  
Agnieszka Opasinska ◽  
Slawomir Kadlubowski ◽  
...  

We made comparison of titanium dioxide powders obtained from three syntheses including sol-gel and precipitation methods as well as using layered (tetramethyl)ammonium titanate as a source of TiO2. The obtained precursors were subjected to step annealing at elevated temperatures to transform into rutile form. The transformation was determined by Raman measurements in each case. The resulting products were characterised using Raman spectroscopy and dynamic light scattering. The main goal of the studies performed was to compare the temperature of the transformation in three titania precursors obtained by different methods of soft chemistry routes and to evaluate dielectric properties of rutile products by means of broadband dielectric spectroscopy. Different factors affecting the electrical properties of calcinated products were discussed. It was found that sol-gel synthesis provided rutile form after annealing at 850°C with the smallest particles size about 20 nm, the highest value of dielectric permittivity equal to 63.7, and loss tangent equal to 0.051 at MHz frequencies. The other powders transformed to rutile at higher temperature, that is, 900°C, exhibit lower value of dielectric permittivity and had a higher value of particles size. The correlation between the anatase-rutile transformation temperature and the size of annealed particles was proposed.

2020 ◽  
Vol 854 ◽  
pp. 45-50
Author(s):  
Ekaterina N. Gubareva ◽  
Valeria V. Strokova ◽  
Yulia N. Ogurtsova ◽  
Pavel S. Baskakov ◽  
Lok Pratap Singh

The paper presents the process of sol-gel synthesis of titanium dioxide nanoparticles, the peculiarities of the influence of component composition (titanium precursor content, solvent and stabilizer − surfactant) on the properties of sol and powder obtained on its basis. As a result of the study, the nature of the influence of the type and content of the surfactant in the solution of tetrabutoxytitanium in ethanol on the size of the synthesized particles of titanium dioxide was revealed. The optimal composition of the reaction mixture of TiO–R sol was obtained and the optimal ratio of tetrabutoxytitanium and ethyl alcohol was revealed using which a material with a high content of nanosized titanium dioxide was obtained.


2015 ◽  
Vol 17 (1) ◽  
pp. 518-531 ◽  
Author(s):  
Martina Pini ◽  
Roberto Rosa ◽  
Paolo Neri ◽  
Federica Bondioli ◽  
Anna Maria Ferrari

A green metrics evaluation of the bottom-up hydrolytic sol–gel synthesis of titanium dioxide (TiO2) nanoparticles has been performed by following two different approaches, namely, EATOS software and LCA methodology.


2015 ◽  
Vol 75 (1) ◽  
pp. 134-140 ◽  
Author(s):  
Zhijie Feng ◽  
Zhuo He ◽  
Bangxu Liu ◽  
Yanyan He ◽  
Chao Lv ◽  
...  

2015 ◽  
Vol 659 ◽  
pp. 121-126 ◽  
Author(s):  
Pat Sooksaen

Aluminium borate nanowhiskers with varying aspect ratio were synthesized via sol–gel synthesis. The morphology of aluminum borate (Al4B2O9 and Al18B4O33) nanowhiskers could be controlled by varying the aluminum to boron (Al:B) molar ratio in the sol–gel derived precursors. Sintering temperatures (850 and 1100°C) and sintering times (4 and 32 hours) also affected the phase composition and size of the nanowhiskers. Citric acid was also added in the sol–gel derived precursors as a surface stabilizer for obtaining uniform finely dispersed nanostructures. Fine nanowhiskers were obtained by the calcination at 850°C, whereas higher temperature of 1100°C led to thicker and longer nanowhiskers and became rod-like crystals. The morphology and phase composition were investigated by field emission scanning electron microscope and X-ray diffraction. Chemical bond vibrations in the synthesized nanowhiskers were investigated by Fourier-transform infrared spectroscopy.


2016 ◽  
Vol 22 (1) ◽  
pp. 65-73
Author(s):  
Aleksandar Golubovic ◽  
Ivana Veljkovic ◽  
Maja Scepanovic ◽  
Mirjana Grujic-Brojcin ◽  
Natasa Tomic ◽  
...  

The titanium dioxide (TiO2) nanopowders were produced by sol-gel technique from tetrabutyl titanate as a precursor by varying some parameters of the sol-gel synthesis like the temperature (500 and 550 ?C) and the duration of the calcination (1.5, 2, and 2.5 h). X-ray powder diffraction (XRPD) results have shown that all synthesized nanopowders are dominantly in anatase phase, with the presence of a small amount of rutile in samples calcined at 550 ?C. According to the results obtained by Williamson-Hall method, the anatase crystallite size was increased with the duration of the calcination (from 24 to 29 nm in samples calcined at lower, and from 30 to 35 nm in samples calcined at higher temperature). The analysis of the shift and linewidth of the most intensive anatase Eg Raman mode confirmed the XRPD results. The analysis of pore structure from nitrogen sorption experimental data described all samples as mesoporous, with mean pore diameters in the range of 5-8 nm. Nanopowder properties have been related to the photocatalytic activity, tested in degradation of the textile dye (C.I. Reactive Orange 16), carbofuran and phenol.


Sign in / Sign up

Export Citation Format

Share Document