scholarly journals Smart HVAC Control in IoT: Energy Consumption Minimization with User Comfort Constraints

2014 ◽  
Vol 2014 ◽  
pp. 1-11 ◽  
Author(s):  
Jordi Serra ◽  
David Pubill ◽  
Angelos Antonopoulos ◽  
Christos Verikoukis

Smart grid is one of the main applications of the Internet of Things (IoT) paradigm. Within this context, this paper addresses the efficient energy consumption management of heating, ventilation, and air conditioning (HVAC) systems in smart grids with variable energy price. To that end, first, we propose an energy scheduling method that minimizes the energy consumption cost for a particular time interval, taking into account the energy price and a set of comfort constraints, that is, a range of temperatures according to user’s preferences for a given room. Then, we propose an energy scheduler where the user may select to relax the temperature constraints to save more energy. Moreover, thanks to the IoT paradigm, the user may interact remotely with the HVAC control system. In particular, the user may decide remotely the temperature of comfort, while the temperature and energy consumption information is sent through Internet and displayed at the end user’s device. The proposed algorithms have been implemented in a real testbed, highlighting the potential gains that can be achieved in terms of both energy and cost.

Energies ◽  
2021 ◽  
Vol 14 (8) ◽  
pp. 2078
Author(s):  
Akinkunmi Adegbenro ◽  
Michael Short ◽  
Claudio Angione

Heating, ventilating, and air-conditioning (HVAC) systems account for a large percentage of energy consumption in buildings. Implementation of efficient optimisation and control mechanisms has been identified as one crucial way to help reduce and shift HVAC systems’ energy consumption to both save economic costs and foster improved integration with renewables. This has led to the development of various control techniques, some of which have produced promising results. However, very few of these control mechanisms have fully considered important factors such as electricity time of use (TOU) price information, occupant thermal comfort, computational complexity, and nonlinear HVAC dynamics to design a demand response schema. In this paper, a novel two-stage integrated approach for such is proposed and evaluated. A model predictive control (MPC)-based optimiser for supervisory setpoint control is integrated with a digital parameter-adaptive controller for use in a demand response/demand management environment. The optimiser is designed to shift the heating load (and hence electrical load) to off-peak periods by minimising a trade-off between thermal comfort and electricity costs, generating a setpoint trajectory for the inner loop HVAC tracking controller. The tracking controller provides HVAC model information to the outer loop for calibration purposes. By way of calibrated simulations, it was found that significant energy saving and cost reduction could be achieved in comparison to a traditional on/off or variable HVAC control system with a fixed setpoint temperature.


2021 ◽  
Author(s):  
Malik bader alazzam ◽  
Fawaz Alassery

Abstract The Internet of Things (IoT) has subsequently been applied to a variety of sectors, including smart grids, farming, weather prediction, power generation, wastewater treatment, and so on. So if the Internet of Things has enormous promise in a wide range of applications, there still are certain areas where it may be improved. Designers had focused our present research on reducing the energy consumption of devices in IoT networks, which will result in a longer network lifetime. The far more suitable Cluster Head (CH) throughout the IoT system is determined in this study to optimize energy consumption. Whale Optimization Algorithm (WOA) with Evolutionary Algorithm (EA) is indeed a mixed meta-heuristic algorithm used during the suggested study. Various quantifiable metrics, including the variety of adult nodes, workload, temperatures, remaining energy, and a target value, were utilized IoT network groups. The suggested method then is contrasted to several cutting-edge optimization techniques, including the Artificial Bee Colony method, Neural Network, Adapted Gravity Simulated annealing. The findings show that the suggested hybrid method outperforms conventional methods.


Author(s):  
Rondik J. Hassan ◽  
Subhi R. M. Zeebaree ◽  
Siddeeq Y. Ameen ◽  
Shakir Fattah Kak ◽  
Mohammed A. M. Sadeeq ◽  
...  

Automation frees workers from excessive human involvement to promote ease of use while still reducing their input of labor. There are about 2 billion people on Earth who live in cities, which means about half of the human population lives in an urban environment. This number is rising which places great problems for a greater number of people, increased traffic, increased noise, increased energy consumption, increased water use, and land pollution, and waste. Thus, the issue of security, coupled with sustainability, is expected to be addressed in cities that use their brain. One of the most often used methodologies for creating a smart city is the Internet of Things (IoT). IoT connectivity is understood to be the very heart of the city of what makes a smart city. such as sensor networks, wearables, mobile apps, and smart grids that have been developed to harness the city's most innovative connectivity technology to provide services and better control its citizens The focus of this research is to clarify and showcase ways in which IoT technology can be used in infrastructure projects for enhancing both productivity and responsiveness.


Inventions ◽  
2019 ◽  
Vol 4 (1) ◽  
pp. 3 ◽  
Author(s):  
Eusébio Conceição ◽  
António Sousa ◽  
João Gomes ◽  
António Ruano

In this work, HVAC (Heating, Ventilation and Air Conditioning) systems applied in university buildings with control based on PMV (Predicted Mean Vote) and aPMV (adaptive Predicted Mean Vote) indexes are discussed. The building’s thermal behavior with complex topology, in transient thermal conditions, for summer and winter conditions is simulated by software. The university building is divided into 124 spaces, on two levels with an area of 5931 m2, and is composed of 201 transparent surfaces and 1740 opaque surfaces. There are 86 compartments equipped with HVAC systems. The simulation considers the actual occupation and ventilation cycles, the external environmental variables, the internal HVAC system and the occupants’ and building’s characteristics. In this work, a new HVAC control system, designed to simultaneously obtain better occupants’ thermal comfort levels according to category C of ISO 7730 with less energy consumption, is presented. This new HVAC system with aPMV index control is numerically implemented, and its performance is compared with the performance of the same HVAC system with the usual PMV index control. Both HVAC control systems turn on only when the PMV index or the aPMV index reaches values below −0.7, in winter conditions, and when the PMV index or the aPMV index reaches values above +0.7, in summer conditions. In accordance with the results obtained, the HVAC system guarantees negative PMV and aPMV indexes in winter conditions and positive PMV and aPMV indexes in summer conditions. The energy consumption level is higher in winter conditions than in summer conditions for compartments with shading, and it is lower in winter conditions than in summer conditions for compartments exposed to direct solar radiation. The consumption level is higher using the PMV control than with the aPMV control. Air temperature, in accordance with Portuguese standards, is higher than 20 °C in winter conditions and lower than 27 °C in summer conditions. In Mediterranean climates, the HVAC systems with aPMV control provide better occupants’ thermal comfort levels and less energy consumption than the HVAC system with PMV control.


Energies ◽  
2018 ◽  
Vol 11 (9) ◽  
pp. 2385 ◽  
Author(s):  
Meihua Wang ◽  
Wei-Chang Yeh ◽  
Ta-Chung Chu ◽  
Xianyong Zhang ◽  
Chia-Ling Huang ◽  
...  

Wireless (smart) sensor networks (WSNs), networks made up of embedded wireless smart sensors, are an important paradigm with a wide range of applications, including the internet of things (IoT), smart grids, smart production systems, smart buildings and many others. WSNs achieve better execution efficiency if their energy consumption can be better controlled, because their component sensors are either difficult or impossible to recharge, and have a finite battery life. In addition, transmission cost must be minimized, and signal transmission quantity must be maximized to improve WSN performance. Thus, a multi-objective involving energy consumption, cost and signal transmission quantity in WSNs needs to be studied. Energy consumption, cost and signal transmission quantity usually have uncertain characteristics, and can often be represented by fuzzy numbers. Therefore, this work suggests a fuzzy simplified swarm optimization algorithm (fSSO) to resolve the multi-objective optimization problem consisting of energy consumption, cost and signal transmission quantity of the transmission process in WSNs under uncertainty. Finally, an experiment of ten benchmarks from smaller to larger scale WSNs is conducted to demonstrate the effectiveness and efficiency of the proposed fSSO algorithm.


2019 ◽  
Vol 01 (02) ◽  
pp. 31-39 ◽  
Author(s):  
Duraipandian M. ◽  
Vinothkanna R.

The paper proposing the cloud based internet of things for the smart connected objects, concentrates on developing a smart home utilizing the internet of things, by providing the embedded labeling for all the tangible things at home and enabling them to be connected through the internet. The smart home proposed in the paper concentrates on the steps in reducing the electricity consumption of the appliances at the home by converting them into the smart connected objects using the cloud based internet of things and also concentrates on protecting the house from the theft and the robbery. The proposed smart home by turning the ordinary tangible objects into the smart connected objects shows considerable improvement in the energy consumption and the security provision.


2016 ◽  
Vol 26 (1) ◽  
pp. 17
Author(s):  
Carlos Deyvinson Reges Bessa

ABSTRACTThis work aims to study which wireless sensor network routing protocol is more suitable for Smart Grids applications, through simulation of AODV protocols, AOMDV, DSDV and HTR in the NS2 simulation environment. Was simulated a network based on a residential area with 47 residences, with one node for each residence and one base station, located about 25m from the other nodes. Many parameters, such as packet loss, throughput, delay, jitter and energy consumption were tested.  The network was increased to 78 and 93 nodes in order to evaluate the behavior of the protocols in larger networks. The tests proved that the HTR is the routing protocol that has the best results in performance and second best in energy consumption. The DSDV had the worst performance according to the tests.Key words.- Smart grid, QoS analysis, Wireless sensor networks, Routing protocols.RESUMENEste trabajo tiene como objetivo estudiar el protocolo de enrutamiento de la red de sensores inalámbricos es más adecuado para aplicaciones de redes inteligentes, a través de la simulación de protocolos AODV, AOMDV, DSDV y HTR en el entorno de simulación NS2. Se simuló una red basada en una zona residencial con 47 residencias, con un nodo para cada residencia y una estación base, situada a unos 25 metros de los otros nodos. Muchos parámetros, tales como la pérdida de paquetes, rendimiento, retardo, jitter y el consumo de energía se probaron. La red se incrementó a 78 y 93 nodos con el fin de evaluar el comportamiento de los protocolos de redes más grandes. Las pruebas demostraron que el HTR es el protocolo de enrutamiento que tiene los mejores resultados en el rendimiento y el segundo mejor en el consumo de energía. El DSDV tuvo el peor desempeño de acuerdo a las pruebas.Palabras clave.- redes inteligentes, análisis de calidad de servicio, redes de sensores inalámbricas, protocolos de enrutamiento.


Sign in / Sign up

Export Citation Format

Share Document