scholarly journals Synthesis, Characterization andIn VitroAnticancer Evaluation of Itaconic Acid Based Random Copolyester

2014 ◽  
Vol 2014 ◽  
pp. 1-7 ◽  
Author(s):  
J. Gowsika ◽  
R. Nanthini

The present study deals with the synthesis and characterization of an aliphatic copolyester, poly [butylene fumarate-co-butylene itaconate] (PIFB) copolymer was obtained from itaconic acid, fumaric acid, and 1,4-butanediol using titanium tetraisopropoxide (TTiPO) through a two step process of transesterification and melt polycondensation. The synthesized aliphatic random copolyester was characterized with the help of FT-IR,1H-NMR,13C-NMR, viscosity measurements, Gel Permeation Chromatography (GPC) and X-ray diffraction (XRD) analysis. Thermal properties have been analyzed using thermogravimetric analysis (TGA) and Differential Scanning Calorimetry (DSC). Hydrolytic degradation studies were carried out in acid and alkaline regions of various pH values. The synthesized copolymer was subjected toin vitroanticancer activity studies against human breast cancer (MCF-7) cell line.

2014 ◽  
Vol 2014 ◽  
pp. 1-9 ◽  
Author(s):  
Narendran Kandaswamy ◽  
Nanthini Raveendiran

Synthesis of random biscoumarin copolyester bearing pendant 3-(trifluoromethyl)styrene was prepared by the reaction of biscoumarin monomer 3 and hydroquinone 5 with azeloyl chloride. The influence of pendant 3-(trifluoromethyl)styrene unit on the properties of copolyester such as inherent viscosity, solubility, and thermal stability was investigated and compared in detail. The inherent viscosity and polydispersity index of the copolyester were found to be 0.15 dL/g and 1.36, respectively. The chemical structure of the copolyester was investigated by Fourier-transform infrared spectroscopy (FTIR) and proton nuclear magnetic resonance (1H-NMR) spectroscopy. The physical properties of copolyester were characterized by thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), gel permeation chromatography (GPC), and X-ray diffraction (XRD) technique. Agar disc diffusion method was employed to study the antimicrobial activity of the random copolyester. In vitro anticancer activity against lung cancer (Hep-2) cell line was also investigated.


2014 ◽  
Vol 2014 ◽  
pp. 1-6 ◽  
Author(s):  
Narendran Kandaswamy ◽  
Nanthini Raveendiran

Synthesis of random copolyester bearing 4-arylidene curcumin M1 in the polymer backbone was prepared by solution polycondensation method. The influence of copolyester bearing 4-arylidene curcumin M1 unit on the properties of copolyester such as inherent viscosity, solubility, and thermal stability was investigated and studied in detail. The inherent viscosity and polydispersity index of the copolyester were found to be 0.19 dL/g and 1.38, respectively. The chemical structure of the copolyester was investigated by Fourier-transform infrared spectroscopy (FTIR) and proton nuclear magnetic resonance (1H-NMR) spectroscopy. The physical properties of copolyester were characterized by thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), gel permeation chromatography (GPC), and X-ray diffraction (XRD) technique. Agar disc diffusion method was employed to study the antimicrobial activity of the random copolyester. In vitro anticancer activity against lung cancer (Hep-2) cell line was investigated.


2015 ◽  
Vol 2015 ◽  
pp. 1-11 ◽  
Author(s):  
Zhisen Shen ◽  
Dakai Lu ◽  
Qun Li ◽  
Zongyong Zhang ◽  
Yabin Zhu

Biodegradable crosslinked polyurethane (cPU) was synthesized using polyethylene glycol (PEG), L-lactide (L-LA), and hexamethylene diisocyanate (HDI), with iron acetylacetonate (Fe(acac)3) as the catalyst and PEG as the extender. Chemical components of the obtained polymers were characterized by FTIR spectroscopy,1H NMR spectra, and Gel Permeation Chromatography (GPC). The thermodynamic properties, mechanical behaviors, surface hydrophilicity, degradability, and cytotoxicity were tested via differential scanning calorimetry (DSC), tensile tests, contact angle measurements, and cell culture. The results show that the synthesized cPU possessed good flexibility with quite low glass transition temperature (Tg, −22°C) and good wettability. Water uptake measured as high as 229.7 ± 18.7%. These properties make cPU a good candidate material for engineering soft tissues such as the hypopharynx.In vitroandin vivotests showed that cPU has the ability to support the growth of human hypopharyngeal fibroblasts and angiogenesis was observed around cPU after it was implanted subcutaneously in SD rats.


e-Polymers ◽  
2010 ◽  
Vol 10 (1) ◽  
Author(s):  
Nurhidayatullaili Muhd Julkapli ◽  
Zulkifli Ahmad ◽  
Hazizan Md Akil

AbstractChemically cross-linked chitosan (MC) containing 1,2,4,5- benzenetetracarboxylic acid (BCA) as the cross-linking agent was prepared to improve the metal ions absorption capacity of native chitosan (NC) and limit its biodegradability. The Fourier transform infra-red (FTIR) and proton neutron magnetic resonance (1H NMR) results showed that BCA was successfully linked onto N-position of NC. The crystalline nature of NC was reduced significantly after cross-linking as examined by X-ray diffraction (XRD) analysis. Therefore, the glass transition temperature (Tg) of MC was higher than NC as reported by differential scanning calorimetry (DSC). Moreover, thermogravimetric (TGA) analysis showed that, MC had better thermal stability than NC. Morphology changes on the surface of NC and MC were characterized by field emission scanning electron microscopy (FESEM) and showed that MC had more porous surface than NC. In pH medium of 3 to 6, MC had excellent Cu (II) ions absorption capacity with a maximum 16 % higher than NC.


2012 ◽  
Vol 535-537 ◽  
pp. 1516-1519
Author(s):  
Ying Gang Jia ◽  
Peng Tian ◽  
Kun Ming Song ◽  
Bao Yan Zhang

Atom transfer radical polymerization (ATRP) of methacrylate liquid crystal monomer M (4-((4-(2-(acryloyloxy)ethoxy)benzoyl)oxy)phenyl 4-propylbenzoate) was carried out using CuBr/PMDETA complex as catalyst and 2-bromo-2-methyl-propionic acid ester as initiator. The obtained monomer M and polymer P was characterized via infrared spectroscopy and1H NMR. The phase behavior and mesomorphism were investigated by differential scanning calorimetry (DSC), polarizing optical microscopy (POM), and x-ray diffraction (XRD). The molecular weight and the structure of the polymers were identified with gel permeation chromatography and nuclear magnetic resonance.


2008 ◽  
Vol 61 (10) ◽  
pp. 762 ◽  
Author(s):  
Yousef M. Hamdan ◽  
Shitao Fu ◽  
Xiangmei Jiang ◽  
Yinhua Cheng ◽  
Kaixun Huang ◽  
...  

2-Octylsuccinic acid and its copolyanhydrides with sebacic acid have been synthesized by melt polycondensation, and were characterized by Fourier transform infrared spectroscopy, 1H NMR, gel permeation chromatography, differential scanning calorimetry, and thermal gravimetric analysis. In vitro studies showed that all copolymers are degradable in phosphate buffer at 37°C. The release profiles of the hydrophilic model drug ciprofloxacin hydrochloride follow first-order release kinetics.


2010 ◽  
Vol 2010 ◽  
pp. 1-8 ◽  
Author(s):  
Peng Zhao ◽  
Wanqiang Liu ◽  
Qingsheng Wu ◽  
Jie Ren

Series of biodegradable polyesters poly(butylene adipate) (PBA), poly(butylene succinate) (PBS), and poly(butylene adipate-co-butylene terephthalate) (PBAT) were synthesized successfully by melt polycondensation. The polyesters were characterized by Fourier transform infrared spectroscopy (FTIR),1H-NMR, differential scanning calorimetry (DSC), and gel permeation chromatography (GPC), respectively. The blends of poly(lactic acid) (PLA) and biodegradable polyester were prepared using a twin screw extruder. PBAT, PBS, or PBA can be homogenously dispersed in PLA matrix at a low content (5–20 wt%), yielding the blends with much higher elongation at break than homo-PLA. DSC analysis shows that the isothermal and nonisothermal crystallizabilities of PLA component are promoted in the presence of a small amount of PBAT.


Author(s):  
Maria Elisa Rodrigues Coimbra ◽  
Márcia Gouvea Bernardes ◽  
Carlos Nelson Elias ◽  
Paulo Guilherme Coelho

This study evaluated thein vitrodegradation of pellet, powder and plates of poly-L-DL-lactic acid (PLDLLA) after two processing methods. Part of the material was reduced to powder by cryogenic milling and part of it molded injected in plate form. The crystallinity was evaluated by Differential Scanning Calorimetry (DSC), Fourier Transform Infrared Spectroscopy (FTIR), X-Ray Diffraction (XRD), and Gel Permeation Chromatography (GPC) before and after immersion in simulated body fluid for 30, 60, and 90 days. The glass transition temperature (Tg) of the pellets and the powder were 61.5°C, 66°C. The Tgs of the plates ranged from 59.55°C to 63.06°C. Their endothermic peaks were observed at 125°C and 120°C, which was not identified to the plates samples. The FTIR spectrum showed bands of amorphous and crystalline content. The XRD results showed a peak related to the crystalline content, and a wide reflection related to the amorphous content. The milling process increased the crystallinity and the molding injection decreased it.


2020 ◽  
Vol 17 ◽  
Author(s):  
Akhlesh Kumar Jain ◽  
Hitesh Sahu ◽  
Keerti Mishra ◽  
Suresh Thareja

Aim: To design D-Mannose conjugated 5-Fluorouracil (5-FU) loaded Jackfruit seed starch nanoparticles (JFSSNPs) for site specific delivery. Background: Liver cancer is the third leading cause of death in world and fifth most often diagnosed cancer is the major global threat to public health. Treatment of liver cancer with conventional method bears several side effects, thus to undertake these side effects as a formulation challenge, it is necessary to develop novel target specific drug delivery system for the effective and better localization of drug into the proximity of target with restricting the movement of drug in normal tissues. Objective: To optimize and characterize the developed D-Mannose conjugated 5-Fluorouracil (5-FU) loaded Jackfruit seed starch nanoparticles (JFSSNPs) for effective treatment of liver cancer. Materials and methods: 5-FU loaded JFSSNPs were prepared and optimized formulation had higher encapsulation efficiency were conjugated with D-Mannose. These formulations were characterized for size, morphology, zeta potential, X-Ray Diffraction, and Differential Scanning Calorimetry. Potential of NPs were studied using in vitro cytotoxicity assay, in vivo kinetic studies and bio-distribution studies. Result and discussion: 5-Fluorouracil loaded NPs had particle size between 336 to 802nm with drug entrapment efficiency was between 64.2 to 82.3%. In XRD analysis, 5-FU peak was diminished in the diffractogram, which could be attributed to the successful incorporation of drug in amorphous form. DSC study suggests there was no physical interaction between 5- FU and Polymer. NPs showed sustained in vitro 5-FU release up to 2 hours. In vivo, mannose conjugated NPs prolonged the plasma level of 5-FU and assist selective accumulation of 5-FU in the liver (vs other organs spleen, kidney, lungs and heart) compared to unconjugated one and plain drug. Conclusion: In vivo, bio-distribution and plasma profile studies resulted in significantly higher concentration of 5- Fluorouracil liver suggesting that these carriers are efficient, viable, and targeted carrier of 5-FU treatment of liver cancer.


Author(s):  
Erdoğan Karip ◽  
Mehtap Muratoğlu

People are exposed to different kinds of diseases or various accidents in life. Hydroxyapatite (HA) has been widely employed for bone treatment applications. In this study, HA was extracted from sheep bones. Bio-composites were doped with 1, 5, and 10 wt.% of expanded perlite and 5 wt.% of ZrO2–MgO-P2O5. The bio-composites were prepared by the cold isostatic pressing method (250 MPa) and sintered at 900°C for 1 h. In order to evaluate the characteristics of the bio-composites, microhardness, density, X-ray diffraction (XRD), Fourier transform infra-red spectroscopy (FT-IR), scanning electron microscopy (SEM), and energy dispersive spectroscopy (EDS) analyses were carried out on them. Additionally, the specimens whose characteristics were determined were kept in synthetic body fluid (SBF), and their in vitro behavior was examined. As a result, it was observed that microhardness increased as both the weight and the grain size of the expanded perlite were increased. Calcium silicate, tri-calcium phosphate, and hydroxyapatite were observed in the XRD analysis of all samples, and the formation of apatite structures was increased by addition of ZrO2–MgO–P2O5.


Sign in / Sign up

Export Citation Format

Share Document