scholarly journals Synthesis, Characterization, and In Vitro Antimicrobial and Anticancer Evaluation of Copolyester Bearing 4-Arylidene Curcumin in the Main Chain

2014 ◽  
Vol 2014 ◽  
pp. 1-6 ◽  
Author(s):  
Narendran Kandaswamy ◽  
Nanthini Raveendiran

Synthesis of random copolyester bearing 4-arylidene curcumin M1 in the polymer backbone was prepared by solution polycondensation method. The influence of copolyester bearing 4-arylidene curcumin M1 unit on the properties of copolyester such as inherent viscosity, solubility, and thermal stability was investigated and studied in detail. The inherent viscosity and polydispersity index of the copolyester were found to be 0.19 dL/g and 1.38, respectively. The chemical structure of the copolyester was investigated by Fourier-transform infrared spectroscopy (FTIR) and proton nuclear magnetic resonance (1H-NMR) spectroscopy. The physical properties of copolyester were characterized by thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), gel permeation chromatography (GPC), and X-ray diffraction (XRD) technique. Agar disc diffusion method was employed to study the antimicrobial activity of the random copolyester. In vitro anticancer activity against lung cancer (Hep-2) cell line was investigated.

2014 ◽  
Vol 2014 ◽  
pp. 1-9 ◽  
Author(s):  
Narendran Kandaswamy ◽  
Nanthini Raveendiran

Synthesis of random biscoumarin copolyester bearing pendant 3-(trifluoromethyl)styrene was prepared by the reaction of biscoumarin monomer 3 and hydroquinone 5 with azeloyl chloride. The influence of pendant 3-(trifluoromethyl)styrene unit on the properties of copolyester such as inherent viscosity, solubility, and thermal stability was investigated and compared in detail. The inherent viscosity and polydispersity index of the copolyester were found to be 0.15 dL/g and 1.36, respectively. The chemical structure of the copolyester was investigated by Fourier-transform infrared spectroscopy (FTIR) and proton nuclear magnetic resonance (1H-NMR) spectroscopy. The physical properties of copolyester were characterized by thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), gel permeation chromatography (GPC), and X-ray diffraction (XRD) technique. Agar disc diffusion method was employed to study the antimicrobial activity of the random copolyester. In vitro anticancer activity against lung cancer (Hep-2) cell line was also investigated.


2014 ◽  
Vol 2014 ◽  
pp. 1-7 ◽  
Author(s):  
J. Gowsika ◽  
R. Nanthini

The present study deals with the synthesis and characterization of an aliphatic copolyester, poly [butylene fumarate-co-butylene itaconate] (PIFB) copolymer was obtained from itaconic acid, fumaric acid, and 1,4-butanediol using titanium tetraisopropoxide (TTiPO) through a two step process of transesterification and melt polycondensation. The synthesized aliphatic random copolyester was characterized with the help of FT-IR,1H-NMR,13C-NMR, viscosity measurements, Gel Permeation Chromatography (GPC) and X-ray diffraction (XRD) analysis. Thermal properties have been analyzed using thermogravimetric analysis (TGA) and Differential Scanning Calorimetry (DSC). Hydrolytic degradation studies were carried out in acid and alkaline regions of various pH values. The synthesized copolymer was subjected toin vitroanticancer activity studies against human breast cancer (MCF-7) cell line.


2019 ◽  
Vol 91 (6) ◽  
pp. 957-965
Author(s):  
Meltem Akkulak ◽  
Yasemin Kaptan ◽  
Yasar Andelib Aydin ◽  
Yuksel Avcibasi Guvenilir

Abstract In this study, rice husk ash (RHA) silanized with 3-glycidyloxypropyl trimethoxysilane was used as support material to immobilize Candida antarctica lipase B. The developed biocatalyst was then utilized in the ring opening polymerization (ROP) of ε-caprolactone and in situ development of PCL/Silica nanohybrid. The silanization degree of RHA was determined as 4 % (w) by thermal gravimetric analysis (TGA). Structural investigations and calculation of molecular weights of nanohybrids were realized by proton nuclear magnetic resonance (1H NMR). Crystallinity was determined by differential scanning calorimetry (DSC) and X-ray diffraction (XRD). Scanning Electron Microscopy (SEM) was used for morphological observations. Accordingly, the PCL composition in the nanohybrid was determined as 4 %, approximately. Short chained amorphous PCL was synthesized with a number average molecular weight of 4400 g/mol and crystallinity degree of 23 %. In regards to these properties, synthesized PCL/RHA composite can find use biomedical applications.


2015 ◽  
Vol 2015 ◽  
pp. 1-11 ◽  
Author(s):  
Zhisen Shen ◽  
Dakai Lu ◽  
Qun Li ◽  
Zongyong Zhang ◽  
Yabin Zhu

Biodegradable crosslinked polyurethane (cPU) was synthesized using polyethylene glycol (PEG), L-lactide (L-LA), and hexamethylene diisocyanate (HDI), with iron acetylacetonate (Fe(acac)3) as the catalyst and PEG as the extender. Chemical components of the obtained polymers were characterized by FTIR spectroscopy,1H NMR spectra, and Gel Permeation Chromatography (GPC). The thermodynamic properties, mechanical behaviors, surface hydrophilicity, degradability, and cytotoxicity were tested via differential scanning calorimetry (DSC), tensile tests, contact angle measurements, and cell culture. The results show that the synthesized cPU possessed good flexibility with quite low glass transition temperature (Tg, −22°C) and good wettability. Water uptake measured as high as 229.7 ± 18.7%. These properties make cPU a good candidate material for engineering soft tissues such as the hypopharynx.In vitroandin vivotests showed that cPU has the ability to support the growth of human hypopharyngeal fibroblasts and angiogenesis was observed around cPU after it was implanted subcutaneously in SD rats.


2017 ◽  
Vol 31 (16-19) ◽  
pp. 1744092 ◽  
Author(s):  
Wendy Zhang ◽  
Xiaowen Yuan

Poly(lactide) (PLA) — flax fibers stereocomplex composites were prepared by casting commercial poly(L-lactide) (PLA) and flax-g-poly(D-lactide) (flax-g-PDLA), where flax-g-PDLA was synthesized via ring-opening polymerization. Successful surface grafting was revealed by Proton Nuclear Magnetic Resonance (1H NMR) spectroscopy, wide angle X-ray diffraction (WAXD) and differential scanning calorimetry (DSC) studies. DSC results showed that stereocomplex crystallites formed between the PLA matrix and flax-g-PDLA, resulting in good fiber/PLA interfacial adhesion.


2012 ◽  
Vol 535-537 ◽  
pp. 1516-1519
Author(s):  
Ying Gang Jia ◽  
Peng Tian ◽  
Kun Ming Song ◽  
Bao Yan Zhang

Atom transfer radical polymerization (ATRP) of methacrylate liquid crystal monomer M (4-((4-(2-(acryloyloxy)ethoxy)benzoyl)oxy)phenyl 4-propylbenzoate) was carried out using CuBr/PMDETA complex as catalyst and 2-bromo-2-methyl-propionic acid ester as initiator. The obtained monomer M and polymer P was characterized via infrared spectroscopy and1H NMR. The phase behavior and mesomorphism were investigated by differential scanning calorimetry (DSC), polarizing optical microscopy (POM), and x-ray diffraction (XRD). The molecular weight and the structure of the polymers were identified with gel permeation chromatography and nuclear magnetic resonance.


Author(s):  
Maria Elisa Rodrigues Coimbra ◽  
Márcia Gouvea Bernardes ◽  
Carlos Nelson Elias ◽  
Paulo Guilherme Coelho

This study evaluated thein vitrodegradation of pellet, powder and plates of poly-L-DL-lactic acid (PLDLLA) after two processing methods. Part of the material was reduced to powder by cryogenic milling and part of it molded injected in plate form. The crystallinity was evaluated by Differential Scanning Calorimetry (DSC), Fourier Transform Infrared Spectroscopy (FTIR), X-Ray Diffraction (XRD), and Gel Permeation Chromatography (GPC) before and after immersion in simulated body fluid for 30, 60, and 90 days. The glass transition temperature (Tg) of the pellets and the powder were 61.5°C, 66°C. The Tgs of the plates ranged from 59.55°C to 63.06°C. Their endothermic peaks were observed at 125°C and 120°C, which was not identified to the plates samples. The FTIR spectrum showed bands of amorphous and crystalline content. The XRD results showed a peak related to the crystalline content, and a wide reflection related to the amorphous content. The milling process increased the crystallinity and the molding injection decreased it.


2021 ◽  
pp. 095400832199674
Author(s):  
Tao Guo ◽  
Yang Fan ◽  
Chang Bo ◽  
Zhang Qi ◽  
Han Tao ◽  
...  

Benzoxazine resin exhibits excellent properties and is widely used in many fields. Herein, the synthesis of a novel compound, the bis(2,4-dihydro-2 H-3-(4- N-maleimido)phenyl-1,3-benzoxazinyl)biphenyl (BMIPBB), has been reported, which was synthesized by reacting N-(4-aminophenyl)maleimide (APMI), formaldehyde, and 4,4’-dihydroxybiphenyl. 1,3,5-three(4-(maleimido)phenyl)-1,3,5-triazine (TMIPT) was formed as an intermediate during the reaction. The proton nuclear magnetic resonance (1H-NMR) and Fourier transform-infrared (FTIR) spectroscopy experiments were conducted to determine the structure of BMIPBB. BMIPBB was obtained as a reddish-brown solid in 40.1% yield. The thermal properties of BMIPBB were investigated using differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA) techniques. Analysis of the DSC curves revealed that the broad peak representing the release of curing reaction heat appeared in the temperature range of 140–330°C. The peak temperature was 242.59°C and the heat of the reaction was 393.82 J/g, indicating that the rate of the curing reaction was low and the heat of the reaction was high. Analysis of the TGA results revealed that the weight loss rate was 5% at 110°C. The monomer exhibited a significant weight loss in the range of 320–500°C. The compound lost 50% of its weight at a temperature of 427°C.


2021 ◽  
Vol 22 (2) ◽  
pp. 700
Author(s):  
Young Jae Moon ◽  
Sun-Jung Yoon ◽  
Jeung-Hyun Koo ◽  
Yihyun Yoon ◽  
Hye Jun Byun ◽  
...  

Accelerating wound healing with minimized bacterial infection has become a topic of interest in the development of the new generation of tissue bio-adhesives. In this study, we fabricated a hydrogel system (MGC-g-CD-ic-TCS) consisting of triclosan (TCS)-complexed beta-cyclodextrin (β-CD)-conjugated methacrylated glycol chitosan (MGC) as an antibacterial tissue adhesive. Proton nuclear magnetic resonance (1H NMR) and differential scanning calorimetry (DSC) results showed the inclusion complex formation between MGC-g-CD and TCS. The increase of storage modulus (G’) of MGC-g-CD-ic-TCS after visible light irradiation for 200 s indicated its hydrogelation. The swollen hydrogel in aqueous solution resulted in two release behaviors of an initial burst and sustained release. Importantly, in vitro and in vivo results indicated that MGC-g-CD-ic-TCS inhibited bacterial infection and improved wound healing, suggesting its high potential application as an antibacterial tissue bio-adhesive.


e-Polymers ◽  
2010 ◽  
Vol 10 (1) ◽  
Author(s):  
Shahram Mehdipour-Ataei ◽  
Leila Akbarian-Feizi

AbstractA diamine monomer containing ester, amide and ether functional groups was prepared and its polymerization reaction with different diisocyanates to give main chain poly(ester amide ether urea)s was investigated. The monomer was synthesized via reaction of terephthaloyl chloride with 4-hydroxybenzoic acid and subsequent reaction of the resulted diacid with 1,8-diamino-3,6-dioxaoctane. The polymers were characterized by FT-IR and 1H-NMR spectroscopic method and elemental analysis. The resulting polymers exhibited excellent solubility in polar solvents. Crystallinity of the resulted polymers was evaluated by wide-angle X-ray diffraction (WXRD) method, and they exhibited semi-crystalline patterns. The glass transition temperatures (Tg) of the polymers determined by differential scanning calorimetry (DSC) and dynamic mechanical thermal analysis (DMTA) were in the range of 88-112 °C. The temperatures for 10% weight loss (T10) from their thermogravimetric analysis (TGA) curves were found to be in the range of 297-312 °C in air. Also the prepared polyureas showed liquid crystalline character.


Sign in / Sign up

Export Citation Format

Share Document