A study on using expanded perlite with hydroxyapatite: Reinforced bio-composites

Author(s):  
Erdoğan Karip ◽  
Mehtap Muratoğlu

People are exposed to different kinds of diseases or various accidents in life. Hydroxyapatite (HA) has been widely employed for bone treatment applications. In this study, HA was extracted from sheep bones. Bio-composites were doped with 1, 5, and 10 wt.% of expanded perlite and 5 wt.% of ZrO2–MgO-P2O5. The bio-composites were prepared by the cold isostatic pressing method (250 MPa) and sintered at 900°C for 1 h. In order to evaluate the characteristics of the bio-composites, microhardness, density, X-ray diffraction (XRD), Fourier transform infra-red spectroscopy (FT-IR), scanning electron microscopy (SEM), and energy dispersive spectroscopy (EDS) analyses were carried out on them. Additionally, the specimens whose characteristics were determined were kept in synthetic body fluid (SBF), and their in vitro behavior was examined. As a result, it was observed that microhardness increased as both the weight and the grain size of the expanded perlite were increased. Calcium silicate, tri-calcium phosphate, and hydroxyapatite were observed in the XRD analysis of all samples, and the formation of apatite structures was increased by addition of ZrO2–MgO–P2O5.

2006 ◽  
Vol 118 ◽  
pp. 639-644
Author(s):  
Hye Sung Kim ◽  
Su Chak Ryu

Hydroxyapatite (Ca10(PO4)6(OH)2, HAp) powders is synthesized using the mixed powders of CaCO3 refined from oyster shells and phosphoric acid (H3PO4-98%, Daejung) as starting materials. The characteristic evaluation and chemical analysis of the synthesized powders is performed by X-ray diffraction (XRD), Fourier-transformed infra-red spectroscopy (FT-IR), and inductively-coupled plasma atomic emission spectroscopy (ICPAES). XRD analysis of synthetic powder by heat treatment at 1300°C for 2hrs shows only HAp peaks corresponding to stoichiometric HAp. It is confirmed by ICP-AES test that impurities such as Zn, In, Ti, Ba, Cd, Pb, and Mn, is not detected at all, but small amounts of Ti and Be is observed (0.099ppm Ti and 0.002ppm Ba). Variation of bone density is measured by giving medication of HAp powder with drinking water into human body continuously for three month. After the medication, the bone density is higher than the medication before. This means that HAp powder made from this process can be used as improver of bone density.


2010 ◽  
Vol 17 (02) ◽  
pp. 153-157 ◽  
Author(s):  
N. R. HA ◽  
Z. X. YANG ◽  
G. C. KIM ◽  
K. H. HWANG ◽  
D. S. SEO ◽  
...  

Titanium alloys are superior of biocompatibility, mechanical properties and chemical stability. The biocompatibility of Ti alloy is related to the surface effect between human tissue and implant. Therefore, the purpose of this study is to investigate the bioactivity of Ti alloy by alkali and acid chemical surface treatment; and the biocompatibility of Ti alloy was evaluated by in vitro test. Higher bone-bonding ability and bioactivity of the substrate were obtained by the formation of apatite layers on the Ti alloy in simulated body fluid. The microstructures of apatite layer were investigated by scanning electron microscope (SEM) and the formed phases were analyzed with X-ray diffraction (XRD).


2015 ◽  
Vol 1 (1) ◽  
Author(s):  
M. Araújo ◽  
M. Miola ◽  
A. Venturello ◽  
G. Baldi ◽  
J. Perez ◽  
...  

AbstractIn this work, sintered pellets of a silica-based bioactive glass were dip-coated with a biocompatible natural-derived polymer in order to investigate the influence of the organic coating on the glass bioactivity. After the sintering process optimization, uncoated and coated pellets have been characterized by means of scanning electron microscopy with energy dispersive spectroscopy (SEM, EDS), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR) and pH measurements, after the immersion in a simulated body fluid (SBF). An increased apatite forming ability and a better control of the pH during soaking of the samples in SBF were observed in the presence of the biopolymer. This result opens a new insight on the simple fabrication of highly bioactive hybrid inorganic-organic materials for medical applications.


2015 ◽  
Vol 638 ◽  
pp. 67-72
Author(s):  
Ana Maria Salantiu ◽  
Florin Popa ◽  
Petru Pascuta ◽  
Olga Soritau ◽  
Noemi Dirzu ◽  
...  

This work aims to investigate the influence of surface conditioning of porous Ti for enhancing its biological activity, as assessed by in vitro stem cell testing. Porous Ti samples with an average porosity of 32% were processed by Powder Metallurgy with dextrin as a space holder. The samples were subjected to H2O2 treatment to form an enhanced TiO2 film, followed by a heat treatment at 400°C and 600°C aiming to the crystallization of the as-formed amorphous titanium oxide. Samples characterization was performed by Scanning Electron Microscopy (SEM), Fourier Transform Infrared Spectroscopy (FT-IR) and X-Ray Diffraction (XRD). The treated surfaces revealed to be made of both anatase and rutile TiO2, with groove–shaped structure and cracks on the surface of the TiO2 film. The intrinsic biocompatibility of the chemically modified porous Ti surfaces was assessed in vitro. In our cell culture tests, stem cells were found to attach and proliferate better on the chemically treated Ti surfaces compared to the control untreated Ti surfaces.


Author(s):  
M. Shah ◽  
D. Patel

Oxcarbazepine has low solubility and low oral bioavailability, so it’s a challenge to formulate suitable dosage form. In this present investigation, to improve the dissolution rate and solubility, skimmed milk is used as a carrier. Physical mixers were prepared using various drugs to carrier ratio and spray drying technology was used to develop solid dispersion with the carrier. Various techniques were used to characterize the solid dispersion immediately after they were made which includes differential scanning calorimetry, scanning electron microscopy, fourier transform infra- red spectroscopy, X-ray diffraction and in-vitro dissolution profiles. The differential scanning calorimetry thermograms of raw drug indicated of its anhydrous crystalline nature. In thermograms of solid dispersion, the characteristic peak was absent suggesting the change from crystalline nature to amorphous form. X-ray diffraction confirmed those results. X-ray diffraction results of raw drug showed highly intense peak characteristic of its crystalline nature where solid dispersion showed less intense, more diffused peak indicating the change in crystalline form. Fourier transforms infra-red spectroscopy studies showed there was no interaction between drug and carrier. Scanning electron microscopy support the amorphous nature of mixer. The whole formulation showed distinct enhancement in the drug release behavior and solubility. The optimum oxcarbazepine to skimmed milk ratio 1:3 enhances the in-vitro drug release by 3.5 fold and also show distinct increase in solubility. It was concluded that for improvement of solubility of poorly water soluble oxcarbazepine, skimmed milk powder as a carrier can be utilize very well.


2019 ◽  
Vol 41 (6) ◽  
pp. 1090-1090
Author(s):  
Mehmet Poyraz Mehmet Poyraz ◽  
Musa Sari Musa Sari ◽  
Halil Berber Halil Berber ◽  
Nursenem Karaca and Fatih Demirci Nursenem Karaca and Fatih Demirci

A new Schiff base, namely 2-methoxy-6-((2-(4 nitrophenyl) hydrazineylidene) methyl)phenol was synthesized and characterized by melting points, elemental analysis, thermogravimetric analysis and spectroscopic techniques (FT-IR, 1H-NMR and UV-VIS spectra). The chemical structure of compound was further confirmed by single crystal structural X-ray diffraction. The Schiff base is crystallized in the triclinic space group P-1. In the crystal, molecules are linked by O-H…O hydrogen bonds between the hydroxy “-O-” atom and the methoxy “-O-” atom. Furthermore, the synthesized Schiff base was tested for the in vitro anticandidal activities using CLSI broth microdilution method against human pathogenic Candida albicans, C. parapsilosis and C. krusei standard strains. In the anticandidal activity test results, the new Schiff base was found to be effective at 1 mg/mL - 0.25 mg/mL concentrations. (The last line omitted) (The sentence marked in red will be deleted)


2006 ◽  
Vol 514-516 ◽  
pp. 985-989
Author(s):  
B.J.M. Leite Ferreira ◽  
M.G.G.M. Duarte ◽  
M. Helena Gil ◽  
Rui N. Correia ◽  
J. Román ◽  
...  

Two materials with potential application in bone tissue repair have been developed: 1) a non-biodegradable composite based in a new methacrylic-co-acrylic matrix; and 2) a biodegradable composite based in a chitosan (Ch) matrix. Both matrices were reinforced with glass-ceramic particles of composition (mol%) 70 SiO2 – 30 CaO. The in vitro bioactivity of composites was assessed by soaking in simulated body fluid (SBF) for periods of up to 7 days at 37º C. X-ray diffraction (XRD) and scanning electron microscopy coupled with X-ray energy dispersive spectroscopy (SEM-EDS) were used for deposit identification after different soaking periods. Calcium phosphate particulate deposits were detected after 3 days of immersion, followed by growth and maturation towards apatite.


2019 ◽  
Vol 2019 ◽  
pp. 1-8
Author(s):  
Wei Xiong ◽  
Yue-kun Shen ◽  
Peng Dong ◽  
Ying Xiao ◽  
Xiong-qing Huang ◽  
...  

Sustained release of anesthesia has shown great promise in the treatment of chronic pain in patients. In this research, we used neutralized ropivacaine as an anesthesia and poly(ε-caprolactone) (PCL) with different architectures to systematically study how these architectures affect the release of ropivacaine. After optimizing the parameters of the preparation of microspheres, ropivacaine-loaded 1-PCL microspheres and 4-PCL microspheres were obtained. Fourier Transform infrared spectra (FT-IR) and X-ray diffraction spectra (XRD) confirmed that ropivacaine was encapsulated within the microsphere rather than inserted on the surface of the microsphere. Ropivacaine was found to be buried deeper in the 1-PCL microsphere than in the 4-PCL microsphere. In vitro release assay revealed that small crystalline grains interfered with ropivacaine release in 4-PCL microspheres during the initial release period, but then two kinds of microspheres showed a similar ropivacaine release rate. We basically proved that the architecture of PCL has a negligible effect on ropivacaine release. Cell proliferation test revealed that the release of products from the microspheres resulted in insignificant toxicity towards mammalian cells.


2009 ◽  
Vol 79-82 ◽  
pp. 815-818 ◽  
Author(s):  
Qiu Ying Zhao ◽  
Ding Yong He ◽  
Xiao Yan Li ◽  
Jian Min Jiang

Hydroxyapatite (HA) coatings were deposited onto Ti6Al4V substrate by microplasma spraying (MPS) in the current research. The morphology, phase compositions, and percentage of crystallinity of the coatings were characterized by means of scanning electron microscopy (SEM) and X-ray diffraction. An in vitro evaluation by soaking the coatings in simulated body fluid (SBF) for up to 14 days was conducted aiming at the evaluation of their bioactivity. Results from the present investigation suggest that microplasma sprayed HA coatings exhibited certain roughness, pores, and microcracks. Thermal decomposition existed in the coatings where HA, α-TCP,β-TCP, amorphous phases, and CaO-exclusive impurities were observed. The in vitro test indicated that HA coatings deposited by MPS possessed better bioactivity and stability. A layer of carbonate-apatite covered most of the coating surface, which did not exhibit significant spalling after incubation in SBF.


2005 ◽  
Vol 480-481 ◽  
pp. 21-26 ◽  
Author(s):  
L.J. Skipper ◽  
F.E. Sowrey ◽  
D.M. Pickup ◽  
R.J. Newport ◽  
K.O. Drake ◽  
...  

The formation of a carbonate-containing hydroxyapatite, HCAp, layer on bioactive calcium silicate sol-gel glass of the formula (CaO)0.3(SiO2)0.7 has been studied in-vitro in Simulated Body Fluid (SBF). Extended X-ray Absorption Fine Structure (EXAFS), X-ray Absorption Near Edge Structure (XANES), X-ray diffraction (XRD), and solid state nuclear magnetic resonance (NMR) measurements have been performed with results showing the formation of a significantly amorphous HCAp layer after less than 5 hours in solution.


Sign in / Sign up

Export Citation Format

Share Document