scholarly journals A NewS4Flavor Symmetry in 3-3-1 Model with Neutral Fermions

2014 ◽  
Vol 2014 ◽  
pp. 1-24 ◽  
Author(s):  
V. V. Vien ◽  
H. N. Long

A newS4flavor model based onSU(3)C⊗SU(3)L⊗U(1)Xgauge symmetry responsible for fermion masses and mixings is constructed. The neutrinos get small masses from only an antisextet ofSU(3)Lwhich is in a doublet underS4. In this work, we assume the VEVs of the antisextet differ from each other underS4and the difference of these VEVs is regarded as a small perturbation, and then the model can fit the experimental data on neutrino masses and mixings. Our results show that the neutrino masses are naturally small and a deviation from the tribimaximal neutrino mixing form can be realized. The quark masses and mixing matrix are also discussed. The number of required Higgs multiplets is less and the scalar potential of the model is simpler than those of the model based onS3and our previousS4model. The assignation of VEVs to antisextet leads to the mixing of the new gauge bosons and those in the standard model. The mixing in the charged gauge bosons as well as the neutral gauge bosons is considered.

2013 ◽  
Vol 28 (32) ◽  
pp. 1350159 ◽  
Author(s):  
V. V. VIEN ◽  
H. N. LONG

We construct a D4flavor model based on SU(3)C⊗SU(3)L⊗U(1)Xgauge symmetry responsible for fermion masses and mixings. The neutrinos get small masses from antisextets which are in a singlet and a doublet under D4. If the D4symmetry is violated as perturbation by a Higgs triplet under SU(3)Land lying in [Formula: see text] of D4, the corresponding neutrino mass mixing matrix gets the most general form. In this case, the model can fit the experimental data in 2012 on neutrino masses and mixing. Our results show that the neutrino masses are naturally small and a little deviation from the tribimaximal neutrino mixing form can be realized. The quark masses and mixing matrix are also discussed. In the model under consideration, the CKM matrix can be different from the unit matrix. The scalar potential of the model is more simpler than those of the model based on S3and S4. Assignation of VEVs to antisextets leads to the mixing of the new gauge bosons and those in the Standard Model. The mixing in the charged gauge bosons as well as the neutral gauge boson is considered.


Symmetry ◽  
2019 ◽  
Vol 11 (11) ◽  
pp. 1418
Author(s):  
Simonas Draukšas ◽  
Vytautas Dūdėnas ◽  
Thomas Gajdosik ◽  
Andrius Juodagalvis ◽  
Paulius Juodsnukis ◽  
...  

The Grimus–Neufeld model can explain the smallness of measured neutrino masses by extending the Standard Model with a single heavy neutrino and a second Higgs doublet, using the seesaw mechanism and radiative mass generation. The Grimus–Lavoura approximation allows us to calculate the light neutrino masses analytically. By inverting these analytic expressions, we determine the neutrino Yukawa couplings from the measured neutrino mass differences and the neutrino mixing matrix. Short-cutting the full renormalization of the model, we implement the Grimus–Neufeld model in the spectrum calculator FlexibleSUSY and check the consistency of the implementation. These checks hint that FlexibleSUSY is able to do the job of numerical renormalization in a restricted parameter space. As a summary, we also comment on further steps of the implementation and the use of FlexibleSUSY for the model.


2007 ◽  
Vol 22 (14n15) ◽  
pp. 2469-2491 ◽  
Author(s):  
FRANCESCO CARAVAGLIOS ◽  
STEFANO MORISI

In third quantization the origin of fermion families is easy to understand: the electron field, the muon field and the tau field are identical fields in precisely the same sense as three electrons are identical and indistinguishable particles of a theory of second quantization. In both cases, the permutation of these fields or particles leaves the Lagrangian invariant. One can also extend the concept of family to gauge bosons. This can be obtained through the semidirect product of the gauge group with the group of permutations of n objects. In this paper we have studied the group [Formula: see text]. We explain why we have chosen E6 as fundamental gauge group factor and why we start with a model with four gauge boson/fermion families to accommodate and to fit the Standard Model with only three fermion families. We suggest a possible symmetry breaking pattern of [Formula: see text] that could explain quark, lepton and neutrino masses and mixings.


2020 ◽  
Vol 2020 (12) ◽  
Author(s):  
Sebastian A. R. Ellis ◽  
Kevin J. Kelly ◽  
Shirley Weishi Li

Abstract The unitarity of the lepton mixing matrix is a critical assumption underlying the standard neutrino-mixing paradigm. However, many models seeking to explain the as-yet-unknown origin of neutrino masses predict deviations from unitarity in the mixing of the active neutrino states. Motivated by the prospect that future experiments may provide a precise measurement of the lepton mixing matrix, we revisit current constraints on unitarity violation from oscillation measurements and project how next-generation experiments will improve our current knowledge. With the next-generation data, the normalizations of all rows and columns of the lepton mixing matrix will be constrained to ≲10% precision, with the e-row best measured at ≲1% and the τ-row worst measured at ∼10% precision. The measurements of the mixing matrix elements themselves will be improved on average by a factor of 3. We highlight the complementarity of DUNE, T2HK, JUNO, and IceCube Upgrade for these improvements, as well as the importance of ντ appearance measurements and sterile neutrino searches for tests of leptonic unitarity.


2001 ◽  
Vol 16 (32) ◽  
pp. 5101-5199 ◽  
Author(s):  
ISABELLA MASINA

We review the problem of neutrino masses and mixings in the context of grand unified theories. After a brief summary of the present experimental status of neutrino physics, we describe how the see-saw mechanism can automatically account for the large atmospheric mixing angle. We provide two specific examples where this possibility is realized by means of a flavor symmetry. We then review in some detail the various severe problems which plague minimal GUT models (like the doublet–triplet splitting and proton-decay) and which force us to investigate the possibility of constructing more elaborate but realistic models. We then show an example of a quasirealistic SUSY SU(5) model which, by exploiting the crucial presence of an Abelian flavor symmetry, does not require any fine-tuning and predicts a satisfactory phenomenology with respect to coupling unification, fermion masses and mixings and bounds from proton decay.


2014 ◽  
Vol 92 (12) ◽  
pp. 1501-1527 ◽  
Author(s):  
Carlos Castro

A Clifford Cl(5, C) unified gauge field theory formulation of conformal gravity and U(4) × U(4) × U(4) Yang–Mills in 4D, is reviewed along with its implications for the Pati–Salam (PS) group SU(4) × SU(2)L × SU(2)R, and trinification grand unified theory models of three fermion generations based on the group SU(3)C × SU(3)L × SU(3)R. We proceed with a brief review of a unification program of 4D gravity and SU(3) × SU(2) × U(1) Yang–Mills emerging from 8D pure quaternionic gravity. A realization of E8 in terms of the Cl(16) = Cl(8) ⊗ Cl(8) generators follows, as a preamble to F. Smith’s E8 and Cl(16) = Cl(8) ⊗ Cl(8) unification model in 8D. The study of chiral fermions and instanton backgrounds in CP2 and CP3 related to the problem of obtaining three fermion generations is thoroughly studied. We continue with the evaluation of the coupling constants and particle masses based on the geometry of bounded complex homogeneous domains and geometric probability theory. An analysis of neutrino masses, Cabbibo–Kobayashi–Maskawa quark-mixing matrix parameters, and neutrino-mixing matrix parameters follows. We finalize with some concluding remarks about other proposals for the unification of gravity and the Standard Model, like string, M, and F theories and noncommutative and nonassociative geometry.


2007 ◽  
Vol 16 (05) ◽  
pp. 1383-1393 ◽  
Author(s):  
HIDEYUKI SAWANAKA

Realistic quark masses and mixing angles are obtained applying the successful A4 family symmetry for leptons, motivated by the quark-lepton assignments of SU (5). The A4 symmetry is suitable to give tri-bimaximal neutrino mixing matrix which is consistent with current experimental data. We study new scenario for the quark sector with the A4 symmetry.


2016 ◽  
Vol 31 (09) ◽  
pp. 1650039 ◽  
Author(s):  
V. V. Vien

We study a neutrino mass model based on [Formula: see text] flavor symmetry which accommodates lepton mass, mixing with nonzero [Formula: see text] and CP violation phase. The spontaneous symmetry breaking in the model is imposed to obtain the realistic neutrino mass and mixing pattern at the tree-level with renormalizable interactions. Indeed, the neutrinos get small masses from one [Formula: see text] doublet and two [Formula: see text] singlets in which one being in [Formula: see text] and the two others in [Formula: see text] under [Formula: see text] with both the breakings [Formula: see text] and [Formula: see text] are taken place in charged lepton sector and [Formula: see text] in neutrino sector. The model also gives a remarkable prediction of Dirac CP violation [Formula: see text] or [Formula: see text] in both the normal and inverted spectrum which is still missing in the neutrino mixing matrix. The relation between lepton mixing angles is also represented.


2011 ◽  
Vol 26 (27n28) ◽  
pp. 4687-4701
Author(s):  
DIETER LÜST

We consider extensions of the Standard Model based on open strings ending on D-branes, with gauge bosons due to strings attached to stacks of D-branes and chiral matter due to strings stretching between intersecting D-branes. Assuming that the fundamental string mass scale is in the TeV range and the theory is weakly coupled, we discuss possible signals of string physics at the Large Hadron Collider (LHC).


1987 ◽  
Vol 02 (03) ◽  
pp. 831-890 ◽  
Author(s):  
B. A. CAMPBELL ◽  
J. ELLIS ◽  
K. ENQVIST ◽  
M. K. GAILLARD ◽  
D. V. NANOPOULOS

Superstring models compactified on Calabi–Yau manifolds contain additional matter fields and gauge bosons beyond those in the Standard Model. The new matter and gauge couplings would make additional contributions to conventional electroweak processes, generate extra flavor-changing neutral interactions, and mediate new interactions leading to proton decay and neutrino masses. We use the phenomenological constraints on such effects to derive upper bounds on Yukawa couplings in low-energy dynamical models inspired by the superstring. We draw attention to the processes which give the best bounds on new Yukawa couplings, and which are those where novel superstring effects might first appear as experimental sensitivity is improved. Our bounds are not sufficient to exclude most superstring models with additional light particles, but do suggest that some couplings are too small to realize certain scenarios for symmetry breaking by radiative corrections.


Sign in / Sign up

Export Citation Format

Share Document