scholarly journals Constrained Multiobjective Biogeography Optimization Algorithm

2014 ◽  
Vol 2014 ◽  
pp. 1-12 ◽  
Author(s):  
Hongwei Mo ◽  
Zhidan Xu ◽  
Lifang Xu ◽  
Zhou Wu ◽  
Haiping Ma

Multiobjective optimization involves minimizing or maximizing multiple objective functions subject to a set of constraints. In this study, a novel constrained multiobjective biogeography optimization algorithm (CMBOA) is proposed. It is the first biogeography optimization algorithm for constrained multiobjective optimization. In CMBOA, a disturbance migration operator is designed to generate diverse feasible individuals in order to promote the diversity of individuals on Pareto front. Infeasible individuals nearby feasible region are evolved to feasibility by recombining with their nearest nondominated feasible individuals. The convergence of CMBOA is proved by using probability theory. The performance of CMBOA is evaluated on a set of 6 benchmark problems and experimental results show that the CMBOA performs better than or similar to the classical NSGA-II and IS-MOEA.

2016 ◽  
Vol 38 (4) ◽  
pp. 307-317
Author(s):  
Pham Hoang Anh

In this paper, the optimal sizing of truss structures is solved using a novel evolutionary-based optimization algorithm. The efficiency of the proposed method lies in the combination of global search and local search, in which the global move is applied for a set of random solutions whereas the local move is performed on the other solutions in the search population. Three truss sizing benchmark problems with discrete variables are used to examine the performance of the proposed algorithm. Objective functions of the optimization problems are minimum weights of the whole truss structures and constraints are stress in members and displacement at nodes. Here, the constraints and objective function are treated separately so that both function and constraint evaluations can be saved. The results show that the new algorithm can find optimal solution effectively and it is competitive with some recent metaheuristic algorithms in terms of number of structural analyses required.


2021 ◽  
Vol 9 ◽  
Author(s):  
Zhaoxing Li ◽  
Qionghai Liu ◽  
Li Chen

A complex network can crash down due to disturbances which significantly reduce the network’s robustness. It is of great significance to study on how to improve the robustness of complex networks. In the literature, the network rewire mechanism is one of the most widely adopted methods to improve the robustness of a given network. Existing network rewire mechanism improves the robustness of a given network by re-connecting its nodes but keeping the total number of edges or by adding more edges to the given network. In this work we propose a novel yet efficient network rewire mechanism which is based on multiobjective optimization. The proposed rewire mechanism simultaneously optimizes two objective functions, i.e., maximizing network robustness and minimizing edge rewire operations. We further develop a multiobjective discrete partite swarm optimization algorithm to solve the proposed mechanism. Compared to existing network rewire mechanisms, the developed mechanism has two advantages. First, the proposed mechanism does not require specific constraints on the rewire mechanism to the studied network, which makes it more feasible for applications. Second, the proposed mechanism can suggest a set of network rewire choices each of which can improve the robustness of a given network, which makes it be more helpful for decision makings. To validate the effectiveness of the proposed mechanism, we carry out experiments on computer-generated Erdős–Rényi and scale-free networks, as well as real-world complex networks. The results demonstrate that for each tested network, the proposed multiobjective optimization based edge rewire mechanism can recommend a set of edge rewire solutions to improve its robustness.


Author(s):  
Wenting Mo ◽  
Sheng-Uei Guan ◽  
Sadasivan Puthusserypady

Many Multiple Objective Genetic Algorithms (MOGAs) have been designed to solve problems with multiple conflicting objectives. Incremental approach can be used to enhance the performance of various MOGAs, which was developed to evolve each objective incrementally. For example, by applying the incremental approach to normal MOGA, the obtained Incremental Multiple Objective Genetic Algorithm (IMOGA) outperforms state-of-the-art MOGAs, including Non-dominated Sorting Genetic Algorithm-II (NSGA-II), Strength Pareto Evolutionary Algorithm (SPEA) and Pareto Archived Evolution Strategy (PAES). However, there is still an open question: how to decide the order of the objectives handled by incremental algorithms? Due to their incremental nature, it is found that the ordering of objectives would influence the performance of these algorithms. In this paper, the ordering issue is investigated based on IMOGA, resulting in a novel objective ordering approach. The experimental results on benchmark problems showed that the proposed approach can help IMOGA reach its potential best performance.


2015 ◽  
pp. 1246-1276
Author(s):  
Wen Fung Leong ◽  
Yali Wu ◽  
Gary G. Yen

Generally, constraint-handling techniques are designed for evolutionary algorithms to solve Constrained Multiobjective Optimization Problems (CMOPs). Most Multiojective Particle Swarm Optimization (MOPSO) designs adopt these existing constraint-handling techniques to deal with CMOPs. In this chapter, the authors present a constrained MOPSO in which the information related to particles' infeasibility and feasibility status is utilized effectively to guide the particles to search for feasible solutions and to improve the quality of the optimal solution found. The updating of personal best archive is based on the particles' Pareto ranks and their constraint violations. The infeasible global best archive is adopted to store infeasible nondominated solutions. The acceleration constants are adjusted depending on the personal bests' and selected global bests' infeasibility and feasibility statuses. The personal bests' feasibility statuses are integrated to estimate the mutation rate in the mutation procedure. The simulation results indicate that the proposed constrained MOPSO is highly competitive in solving selected benchmark problems.


Author(s):  
Andrew J. Robison ◽  
Andrea Vacca

A computationally efficient gerotor gear generation algorithm has been developed that creates elliptical-toothed gerotor gear profiles, identifies conditions to guarantee a feasible geometry, evaluates several performance objectives, and is suitable to use for geometric optimization. Five objective functions are used in the optimization: minimize pump size, flow ripple, adhesive wear, subsurface fatigue (pitting), and tooth tip leakage. The gear generation algorithm is paired with the NSGA-II optimization algorithm to minimize each of the objective functions subject to the constraints to define a feasible geometry. The genetic algorithm is run with a population size of 1000 for a total of 500 generations, after which a clear Pareto front is established and displayed. A design has been selected from the Pareto front which is a good compromise between each of the design objectives and can be scaled to any desired displacement. The results of the optimization are also compared to two profile geometries found in literature. Two alternative geometries are proposed that offer much lower adhesive wear while respecting the size constraints of the published profiles and are thought to be an improvement in design.


2020 ◽  
Vol 2020 ◽  
pp. 1-21
Author(s):  
Hao Chen ◽  
Weikun Li ◽  
Weicheng Cui

Nature-inspired computing has attracted huge attention since its origin, especially in the field of multiobjective optimization. This paper proposes a disruption-based multiobjective equilibrium optimization algorithm (DMOEOA). A novel mutation operator named layered disruption method is integrated into the proposed algorithm with the aim of enhancing the exploration and exploitation abilities of DMOEOA. To demonstrate the advantages of the proposed algorithm, various benchmarks have been selected with five different multiobjective optimization algorithms. The test results indicate that DMOEOA does exhibit better performances in these problems with a better balance between convergence and distribution. In addition, the new proposed algorithm is applied to the structural optimization of an elastic truss with the other five existing multiobjective optimization algorithms. The obtained results demonstrate that DMOEOA is not only an algorithm with good performance for benchmark problems but is also expected to have a wide application in real-world engineering optimization problems.


Author(s):  
Tommaso Selleri ◽  
Behzad Najafi ◽  
Fabio Rinaldi ◽  
Guido Colombo

In the present paper a mathematical model for a mini-channel heat exchanger is proposed. Multiobjective optimization using genetic algorithm is performed in the next step in order to obtain a set of geometrical design parameters, leading to minimum pressure drops and maximum overall heat transfer coefficient. Multiobjective optimization procedure provides a set of optimal solutions, called Pareto front, each of which is a trade-off between the objective functions and can be freely selected by the user according to the specifications of the project. A sensitivity analysis is also carried out to study the effects of different geometrical parameters on the considered functions. The whole system has been modeled based on advanced experimental correlations in matlab environment using a modular approach.


Author(s):  
Wen Fung Leong ◽  
Yali Wu ◽  
Gary G. Yen

Generally, constraint-handling techniques are designed for evolutionary algorithms to solve Constrained Multiobjective Optimization Problems (CMOPs). Most Multiojective Particle Swarm Optimization (MOPSO) designs adopt these existing constraint-handling techniques to deal with CMOPs. In this chapter, the authors present a constrained MOPSO in which the information related to particles' infeasibility and feasibility status is utilized effectively to guide the particles to search for feasible solutions and to improve the quality of the optimal solution found. The updating of personal best archive is based on the particles' Pareto ranks and their constraint violations. The infeasible global best archive is adopted to store infeasible nondominated solutions. The acceleration constants are adjusted depending on the personal bests' and selected global bests' infeasibility and feasibility statuses. The personal bests' feasibility statuses are integrated to estimate the mutation rate in the mutation procedure. The simulation results indicate that the proposed constrained MOPSO is highly competitive in solving selected benchmark problems.


Author(s):  
Minami Miyakawa ◽  
◽  
Keiki Takadama ◽  
Hiroyuki Sato

As an evolutionary approach to solve multi-objective optimization problems involving several constraints, recently a multi-objective evolutionary algorithm (MOEA) using two-stage non-dominated sorting and directed mating (TNSDM) has been proposed. In TNSDM, directed mating utilizes infeasible solutions dominating feasible solutions in the objective space to generate offspring. In our previous studies, significant contribution of directed mating to the improvement of the search performancewas verified on several benchmark problems. However, in the conventional TNSDM, infeasible solutions utilized in directed mating are discarded in the selection process of parents (elites) population and cannot be utilized in the next generation. TNSDM has potential to further improve the search performance by archiving useful solutions for directed mating to the next generation and repeatedly utilizing them in directed mating. To further improve effects of directed mating in TNSDM, in this work, we propose an archiving strategy of useful solutions for directed mating. We verify the search performance of TNSDM using the proposed archive by varying the size of archive, and compare its search performance with the conventional CNSGA-II and RTS onmobjectiveskknapsacks problems. As results, we show that the search performance of TNSDM is improved by introducing the proposed archive in aspects of diversity of the obtained solutions in the objective space and convergence of solutions toward the optimal Pareto front.


2017 ◽  
Vol 2017 ◽  
pp. 1-17 ◽  
Author(s):  
Vimal Savsani ◽  
Vivek Patel ◽  
Bhargav Gadhvi ◽  
Mohamed Tawhid

Most of the modern multiobjective optimization algorithms are based on the search technique of genetic algorithms; however the search techniques of other recently developed metaheuristics are emerging topics among researchers. This paper proposes a novel multiobjective optimization algorithm named multiobjective heat transfer search (MOHTS) algorithm, which is based on the search technique of heat transfer search (HTS) algorithm. MOHTS employs the elitist nondominated sorting and crowding distance approach of an elitist based nondominated sorting genetic algorithm-II (NSGA-II) for obtaining different nondomination levels and to preserve the diversity among the optimal set of solutions, respectively. The capability in yielding a Pareto front as close as possible to the true Pareto front of MOHTS has been tested on the multiobjective optimization problem of the vehicle suspension design, which has a set of five second-order linear ordinary differential equations. Half car passive ride model with two different sets of five objectives is employed for optimizing the suspension parameters using MOHTS and NSGA-II. The optimization studies demonstrate that MOHTS achieves the better nondominated Pareto front with the widespread (diveresed) set of optimal solutions as compared to NSGA-II, and further the comparison of the extreme points of the obtained Pareto front reveals the dominance of MOHTS over NSGA-II, multiobjective uniform diversity genetic algorithm (MUGA), and combined PSO-GA based MOEA.


Sign in / Sign up

Export Citation Format

Share Document