scholarly journals Disruption-Based Multiobjective Equilibrium Optimization Algorithm

2020 ◽  
Vol 2020 ◽  
pp. 1-21
Author(s):  
Hao Chen ◽  
Weikun Li ◽  
Weicheng Cui

Nature-inspired computing has attracted huge attention since its origin, especially in the field of multiobjective optimization. This paper proposes a disruption-based multiobjective equilibrium optimization algorithm (DMOEOA). A novel mutation operator named layered disruption method is integrated into the proposed algorithm with the aim of enhancing the exploration and exploitation abilities of DMOEOA. To demonstrate the advantages of the proposed algorithm, various benchmarks have been selected with five different multiobjective optimization algorithms. The test results indicate that DMOEOA does exhibit better performances in these problems with a better balance between convergence and distribution. In addition, the new proposed algorithm is applied to the structural optimization of an elastic truss with the other five existing multiobjective optimization algorithms. The obtained results demonstrate that DMOEOA is not only an algorithm with good performance for benchmark problems but is also expected to have a wide application in real-world engineering optimization problems.

2020 ◽  
Vol 2020 ◽  
pp. 1-26
Author(s):  
Wusi Yang ◽  
Li Chen ◽  
Yi Wang ◽  
Maosheng Zhang

The recently proposed multiobjective particle swarm optimization algorithm based on competition mechanism algorithm cannot effectively deal with many-objective optimization problems, which is characterized by relatively poor convergence and diversity, and long computing runtime. In this paper, a novel multi/many-objective particle swarm optimization algorithm based on competition mechanism is proposed, which maintains population diversity by the maximum and minimum angle between ordinary and extreme individuals. And the recently proposed θ-dominance is adopted to further enhance the performance of the algorithm. The proposed algorithm is evaluated on the standard benchmark problems DTLZ, WFG, and UF1-9 and compared with the four recently proposed multiobjective particle swarm optimization algorithms and four state-of-the-art many-objective evolutionary optimization algorithms. The experimental results indicate that the proposed algorithm has better convergence and diversity, and its performance is superior to other comparative algorithms on most test instances.


2020 ◽  
Vol 10 (18) ◽  
pp. 6173 ◽  
Author(s):  
Mohammad Dehghani ◽  
Zeinab Montazeri ◽  
Gaurav Dhiman ◽  
O. P. Malik ◽  
Ruben Morales-Menendez ◽  
...  

At present, optimization algorithms are used extensively. One particular type of such algorithms includes random-based heuristic population optimization algorithms, which may be created by modeling scientific phenomena, like, for example, physical processes. The present article proposes a novel optimization algorithm based on Hooke’s law, called the spring search algorithm (SSA), which aims to solve single-objective constrained optimization problems. In the SSA, search agents are weights joined through springs, which, as Hooke’s law states, possess a force that corresponds to its length. The mathematics behind the algorithm are presented in the text. In order to test its functionality, it is executed on 38 established benchmark test functions and weighed against eight other optimization algorithms: a genetic algorithm (GA), a gravitational search algorithm (GSA), a grasshopper optimization algorithm (GOA), particle swarm optimization (PSO), teaching–learning-based optimization (TLBO), a grey wolf optimizer (GWO), a spotted hyena optimizer (SHO), as well as an emperor penguin optimizer (EPO). To test the SSA’s usability, it is employed on five engineering optimization problems. The SSA delivered better fitting results than the other algorithms in unimodal objective function, multimodal objective functions, CEC 2015, in addition to the optimization problems in engineering.


2021 ◽  
Vol 11 (10) ◽  
pp. 4382
Author(s):  
Ali Sadeghi ◽  
Sajjad Amiri Doumari ◽  
Mohammad Dehghani ◽  
Zeinab Montazeri ◽  
Pavel Trojovský ◽  
...  

Optimization is the science that presents a solution among the available solutions considering an optimization problem’s limitations. Optimization algorithms have been introduced as efficient tools for solving optimization problems. These algorithms are designed based on various natural phenomena, behavior, the lifestyle of living beings, physical laws, rules of games, etc. In this paper, a new optimization algorithm called the good and bad groups-based optimizer (GBGBO) is introduced to solve various optimization problems. In GBGBO, population members update under the influence of two groups named the good group and the bad group. The good group consists of a certain number of the population members with better fitness function than other members and the bad group consists of a number of the population members with worse fitness function than other members of the population. GBGBO is mathematically modeled and its performance in solving optimization problems was tested on a set of twenty-three different objective functions. In addition, for further analysis, the results obtained from the proposed algorithm were compared with eight optimization algorithms: genetic algorithm (GA), particle swarm optimization (PSO), gravitational search algorithm (GSA), teaching–learning-based optimization (TLBO), gray wolf optimizer (GWO), and the whale optimization algorithm (WOA), tunicate swarm algorithm (TSA), and marine predators algorithm (MPA). The results show that the proposed GBGBO algorithm has a good ability to solve various optimization problems and is more competitive than other similar algorithms.


Mathematics ◽  
2021 ◽  
Vol 9 (11) ◽  
pp. 1190
Author(s):  
Mohammad Dehghani ◽  
Zeinab Montazeri ◽  
Štěpán Hubálovský

There are many optimization problems in the different disciplines of science that must be solved using the appropriate method. Population-based optimization algorithms are one of the most efficient ways to solve various optimization problems. Population-based optimization algorithms are able to provide appropriate solutions to optimization problems based on a random search of the problem-solving space without the need for gradient and derivative information. In this paper, a new optimization algorithm called the Group Mean-Based Optimizer (GMBO) is presented; it can be applied to solve optimization problems in various fields of science. The main idea in designing the GMBO is to use more effectively the information of different members of the algorithm population based on two selected groups, with the titles of the good group and the bad group. Two new composite members are obtained by averaging each of these groups, which are used to update the population members. The various stages of the GMBO are described and mathematically modeled with the aim of being used to solve optimization problems. The performance of the GMBO in providing a suitable quasi-optimal solution on a set of 23 standard objective functions of different types of unimodal, high-dimensional multimodal, and fixed-dimensional multimodal is evaluated. In addition, the optimization results obtained from the proposed GMBO were compared with eight other widely used optimization algorithms, including the Marine Predators Algorithm (MPA), the Tunicate Swarm Algorithm (TSA), the Whale Optimization Algorithm (WOA), the Grey Wolf Optimizer (GWO), Teaching–Learning-Based Optimization (TLBO), the Gravitational Search Algorithm (GSA), Particle Swarm Optimization (PSO), and the Genetic Algorithm (GA). The optimization results indicated the acceptable performance of the proposed GMBO, and, based on the analysis and comparison of the results, it was determined that the GMBO is superior and much more competitive than the other eight algorithms.


2016 ◽  
Vol 38 (4) ◽  
pp. 307-317
Author(s):  
Pham Hoang Anh

In this paper, the optimal sizing of truss structures is solved using a novel evolutionary-based optimization algorithm. The efficiency of the proposed method lies in the combination of global search and local search, in which the global move is applied for a set of random solutions whereas the local move is performed on the other solutions in the search population. Three truss sizing benchmark problems with discrete variables are used to examine the performance of the proposed algorithm. Objective functions of the optimization problems are minimum weights of the whole truss structures and constraints are stress in members and displacement at nodes. Here, the constraints and objective function are treated separately so that both function and constraint evaluations can be saved. The results show that the new algorithm can find optimal solution effectively and it is competitive with some recent metaheuristic algorithms in terms of number of structural analyses required.


2015 ◽  
pp. 1246-1276
Author(s):  
Wen Fung Leong ◽  
Yali Wu ◽  
Gary G. Yen

Generally, constraint-handling techniques are designed for evolutionary algorithms to solve Constrained Multiobjective Optimization Problems (CMOPs). Most Multiojective Particle Swarm Optimization (MOPSO) designs adopt these existing constraint-handling techniques to deal with CMOPs. In this chapter, the authors present a constrained MOPSO in which the information related to particles' infeasibility and feasibility status is utilized effectively to guide the particles to search for feasible solutions and to improve the quality of the optimal solution found. The updating of personal best archive is based on the particles' Pareto ranks and their constraint violations. The infeasible global best archive is adopted to store infeasible nondominated solutions. The acceleration constants are adjusted depending on the personal bests' and selected global bests' infeasibility and feasibility statuses. The personal bests' feasibility statuses are integrated to estimate the mutation rate in the mutation procedure. The simulation results indicate that the proposed constrained MOPSO is highly competitive in solving selected benchmark problems.


2020 ◽  
Vol 2020 ◽  
pp. 1-16
Author(s):  
Ding Han ◽  
Jianrong Zheng

Most of the multiobjective optimization problems in engineering involve the evaluation of expensive objectives and constraint functions, for which an approximate model-based multiobjective optimization algorithm is usually employed, but requires a large amount of function evaluation. Aiming at effectively reducing the computation cost, a novel infilling point criterion EIR2 is proposed, whose basic idea is mapping a point in objective space into a set in expectation improvement space and utilizing the R2 indicator of the set to quantify the fitness of the point being selected as an infilling point. This criterion has an analytic form regardless of the number of objectives and demands lower calculation resources. Combining the Kriging model, optimal Latin hypercube sampling, and particle swarm optimization, an algorithm, EIR2-MOEA, is developed for solving expensive multiobjective optimization problems and applied to three sets of standard test functions of varying difficulty and comparing with two other competitive infill point criteria. Results show that EIR2 has higher resource utilization efficiency, and the resulting nondominated solution set possesses good convergence and diversity. By coupling with the average probability of feasibility, the EIR2 criterion is capable of dealing with expensive constrained multiobjective optimization problems and its efficiency is successfully validated in the optimal design of energy storage flywheel.


2019 ◽  
Vol 2019 ◽  
pp. 1-23 ◽  
Author(s):  
Amir Shabani ◽  
Behrouz Asgarian ◽  
Saeed Asil Gharebaghi ◽  
Miguel A. Salido ◽  
Adriana Giret

In this paper, a new optimization algorithm called the search and rescue optimization algorithm (SAR) is proposed for solving single-objective continuous optimization problems. SAR is inspired by the explorations carried out by humans during search and rescue operations. The performance of SAR was evaluated on fifty-five optimization functions including a set of classic benchmark functions and a set of modern CEC 2013 benchmark functions from the literature. The obtained results were compared with twelve optimization algorithms including well-known optimization algorithms, recent variants of GA, DE, CMA-ES, and PSO, and recent metaheuristic algorithms. The Wilcoxon signed-rank test was used for some of the comparisons, and the convergence behavior of SAR was investigated. The statistical results indicated SAR is highly competitive with the compared algorithms. Also, in order to evaluate the application of SAR on real-world optimization problems, it was applied to three engineering design problems, and the results revealed that SAR is able to find more accurate solutions with fewer function evaluations in comparison with the other existing algorithms. Thus, the proposed algorithm can be considered an efficient optimization method for real-world optimization problems.


Sign in / Sign up

Export Citation Format

Share Document