scholarly journals A One-Class Classification-Based Control Chart Using the K-Means Data Description Algorithm

2014 ◽  
Vol 2014 ◽  
pp. 1-9
Author(s):  
Walid Gani ◽  
Mohamed Limam

This paper aims to enlarge the family of one-class classification-based control charts, referred to as OC-charts, and extend their applications. We propose a new OC-chart using the K-means data description (KMDD) algorithm, referred to as KM-chart. The proposed KM-chart gives the minimum closed spherical boundary around the in-control process data. It measures the distance between the center of KMDD-based sphere and the new incoming sample to be monitored. Any sample having a distance greater than the radius of KMDD-based sphere is considered as an out-of-control sample. Phase I and II analysis of KM-chart was evaluated through a real industrial application. In a comparative study based on the average run length (ARL) criterion, KM-chart was compared with the kernel-distance based control chart, referred to as K-chart, and the k-nearest neighbor data description-based control chart, referred to as KNN-chart. Results revealed that, in terms of ARL, KM-chart performed better than KNN-chart in detecting small shifts in mean vector. Furthermore, the paper provides the MATLAB code for KM-chart, developed by the authors.

Production ◽  
2011 ◽  
Vol 21 (2) ◽  
pp. 217-222 ◽  
Author(s):  
Yang Su-Fen ◽  
Tsai Wen-Chi ◽  
Huang Tzee-Ming ◽  
Yang Chi-Chin ◽  
Cheng Smiley

In practice, sometimes the process data did not come from a known population distribution. So the commonly used Shewhart variables control charts are not suitable since their performance could not be properly evaluated. In this paper, we propose a new EWMA Control Chart based on a simple statistic to monitor the small mean shifts in the process with non-normal or unknown distributions. The sampling properties of the new monitoring statistic are explored and the average run lengths of the proposed chart are examined. Furthermore, an Arcsine EWMA Chart is proposed since the average run lengths of the Arcsine EWMA Chart are more reasonable than those of the new EWMA Chart. The Arcsine EWMA Chart is recommended if we are concerned with the proper values of the average run length.


2020 ◽  
Vol 1 (1) ◽  
pp. 9-16
Author(s):  
O. L. Aako ◽  
J. A. Adewara ◽  
K. S Adekeye ◽  
E. B. Nkemnole

The fundamental assumption of variable control charts is that the data are normally distributed and spread randomly about the mean. Process data are not always normally distributed, hence there is need to set up appropriate control charts that gives accurate control limits to monitor processes that are skewed. In this study Shewhart-type control charts for monitoring positively skewed data that are assumed to be from Marshall-Olkin Inverse Loglogistic Distribution (MOILLD) was developed. Average Run Length (ARL) and Control Limits Interval (CLI) were adopted to assess the stability and performance of the MOILLD control chart. The results obtained were compared with Classical Shewhart (CS) and Skewness Correction (SC) control charts using the ARL and CLI. It was discovered that the control charts based on MOILLD performed better and are more stable compare to CS and SC control charts. It is therefore recommended that for positively skewed data, a Marshall-Olkin Inverse Loglogistic Distribution based control chart will be more appropriate.


2020 ◽  
Vol 2020 ◽  
pp. 1-9
Author(s):  
Johnson A. Adewara ◽  
Kayode S. Adekeye ◽  
Olubisi L. Aako

In this paper, two methods of control chart were proposed to monitor the process based on the two-parameter Gompertz distribution. The proposed methods are the Gompertz Shewhart approach and Gompertz skewness correction method. A simulation study was conducted to compare the performance of the proposed chart with that of the skewness correction approach for various sample sizes. Furthermore, real-life data on thickness of paint on refrigerators which are nonnormal data that have attributes of a Gompertz distribution were used to illustrate the proposed control chart. The coverage probability (CP), control limit interval (CLI), and average run length (ARL) were used to measure the performance of the two methods. It was found that the Gompertz exact method where the control limits are calculated through the percentiles of the underline distribution has the highest coverage probability, while the Gompertz Shewhart approach and Gompertz skewness correction method have the least CLI and ARL. Hence, the two-parameter Gompertz-based methods would detect out-of-control faster for Gompertz-based X¯ charts.


2018 ◽  
Vol 17 (1) ◽  
Author(s):  
Darmanto Darmanto

<p><em>The manufacturing production process that is currently trend is short-run. Short-run process is a job shop and a just in-time. These causes the process parameters to be unknown due to unavailability of data and generally a small amount of product. The control chart is one of the control charts which  designed for the short run. The procedure of the control chart follows the concept of succesive difference and under the assumption of the multivariate Normal distribution. The sensitivity level of a control chart is evaluated based on the average run length (ARL) value. In this study, the ARL value was calculated based on the shift simulation of the average vector by recording the first m-point out of the control limits. The average vector shift simulation of the target () is performed simultaneously with the properties of a positive shift (=+ δ). Variations of data size and many variables in this study were m = 20, 50 and p = 2, 4, 8, respectively. Each scheme (a combination of δ, m and p) is iterated 250,000 times. The simulation results show that for all schemes when both parameters are known ARL<sub>0 </sub>≈ 370. But, when parameters are unknown, ARL<sub>1</sub> turn to smaller. This conclusion also implied when the number of p and n are increased, it reduce the sensitivity of the control chart.</em></p>


2020 ◽  
Vol 2020 ◽  
pp. 1-14
Author(s):  
Ahmed Ibrahim Shawky ◽  
Muhammad Aslam ◽  
Khushnoor Khan

In this paper, a control chart scheme has been introduced for the mean monitoring using gamma distribution for belief statistics using multiple dependent (deferred) state sampling under the neutrosophic statistics. The coefficients of the control chart and the neutrosophic average run lengths have been estimated for specific false alarm probabilities under various process conditions. The offered chart has been compared with the existing classical chart through simulation and the real data. From the comparison, it is concluded that the performance of the proposed chart is better than that of the existing chart in terms of average run length under uncertain environment. The proposed chart has the ability to detect a shift quickly than the existing chart. It has been observed that the proposed chart is efficient in quick monitoring of the out-of-control process and a cherished addition in the toolkit of the quality control personnel.


2002 ◽  
Vol 124 (4) ◽  
pp. 891-898 ◽  
Author(s):  
Daniel W. Apley

Time series control charts are popular methods for statistical process control of autocorrelated processes. In order to implement these methods, however, a time series model of the process is required. Since time series models must always be estimated from process data, model estimation errors are unavoidable. In the presence of modeling errors, time series control charts that are designed under the assumption of a perfect model may have an actual in-control average run length that is substantially shorter than desired. This paper presents a method for incorporating model uncertainty information into the design of time series control charts to provide a level of robustness with respect to modeling errors. The focus is on exponentially weighted moving average charts and Shewhart individual charts applied to the time series residuals.


Author(s):  
MARCUS B. PERRY ◽  
JOSEPH J. PIGNATIELLO ◽  
JAMES R. SIMPSON

Statistical process control charts are intended to assist operators in detecting process changes. If a process change does occur, the control chart should detect the change quickly. If the operator is provided with an estimate as to when the process changed, the search to find the special cause can be more easily facilitated. We investigate a process-monitoring tool for Poisson count data that quickly responds to process mean count rate changes regardless of the magnitude of the change, while supplying useful diagnostic information. A likelihood ratio approach was used to develop a control chart for a permanent step change in a Poisson process rate parameter. The average run length (ARL) performance of this chart is compared to that of several Poisson cumulative sum (CUSUM) control charts. Our performance results show that the proposed chart performs better than any one CUSUM chart over a wide range of potential shift magnitudes. The proposed chart also provides maximum likelihood estimates of the time and the magnitude of the process shift. These crucial change point diagnostics can greatly enhance the special cause investigation.


1995 ◽  
Vol 5 (1) ◽  
pp. 57-63
Author(s):  
Paul R. Fisher ◽  
Royal D. Heins

A methodology based on process-control approaches used in industrial production is introduced to control the height of poinsettia (Euphorbia pulcherrima L.). Graphical control charts of actual vs. target process data are intuitive and easy to use, rapidly identify trends, and provide a guideline to growers. Target reference values in the poinsettia height control chart accommodate the biological and industrial constraints of a stemelongation model and market specifications, respectively. A control algorithm (proportional-derivative control) provides a link between the control chart and a knowledge-based or expert computer system. A knowledge-based system can be used to encapsulate research information and production expertise and provide management recommendations to growers.


2021 ◽  
Vol 2106 (1) ◽  
pp. 012019
Author(s):  
M Qori’atunnadyah ◽  
Wibawati ◽  
W M Udiatami ◽  
M Ahsan ◽  
H Khusna

Abstract In recent years, the manufacturing industry has tended to reduce mass production and produce in small quantities, which is called “Short Run Production”. In such a situation, the course of the production process is short, usually, the number of productions is less than 50. Therefore, a control chart for the short run production process is required. This paper discusses the comparison between multivariate control chart for short run production (V control chart) and T2 Hotelling control chart applied to sunergy glass data. Furthermore, a simulation of Average Run Length (ARL) was carried out to determine the performance of the two control charts. The results obtained are that the production process has not been statistically controlled using either the V control chart or the T2 Hotelling control chart. The number of out-of-control on the control chart V using the the EWMA test is more than the T2 Hotelling control chart. Based on the ARL value, it shows that the V control chart is more sensitive than the T2 Hotelling control chart.


2021 ◽  
Vol 2021 ◽  
pp. 1-17
Author(s):  
Muhammad Aslam ◽  
G. Srinivasa Rao ◽  
Muhammad Saleem ◽  
Rehan Ahmad Khan Sherwani ◽  
Chi-Hyuck Jun

More recently in statistical quality control studies, researchers are paying more attention to quality characteristics having nonnormal distributions. In the present article, a generalized multiple dependent state (GMDS) sampling control chart is proposed based on the transformation of gamma quality characteristics into a normal distribution. The parameters for the proposed control charts are obtained using in-control average run length (ARL) at specified shape parametric values for different specified average run lengths. The out-of-control ARL of the proposed gamma control chart using GMDS sampling is explored using simulation for various shift size changes in scale parameters to study the performance of the control chart. The proposed gamma control chart performs better than the existing multiple dependent state sampling (MDS) based on gamma distribution and traditional Shewhart control charts in terms of average run lengths. A case study with real-life data from ICU intake to death caused by COVID-19 has been incorporated for the realistic handling of the proposed control chart design.


Sign in / Sign up

Export Citation Format

Share Document