scholarly journals Investigation on Thermal Degradation Process of Polymer Solar Cells Based on Blend of PBDTTT-C andPC70BM

2014 ◽  
Vol 2014 ◽  
pp. 1-9 ◽  
Author(s):  
Yu Ning ◽  
Longfeng Lv ◽  
Yunzhang Lu ◽  
Aiwei Tang ◽  
Yufeng Hu ◽  
...  

The effects of thermal treatment on the photovoltaic performance of conventional and inverted polymer solar cells (PSCs) based on the combination of poly[(4,8-bis-(2-ethylhexyloxy)-benzo[1,2-b;4,5-b′]dithiophene)-2,6-diyl-alt-(4-(2-ethylhexanoyl)-thie-no[3,4-b]thiophene))-2,6-diyl] (PBDTTT-C) and [6,6]-phenyl C70-butyric acid methyl ester (PC70BM) are investigated. The transient photoconductivity, the absorption spectra, and the transmission electron microscopy (TEM) images have been employed to study the thermal degradation of the inverted PSCs. The degradation is attributed to the inefficient charge generation and imbalance in charge-carrier transport, which is closely associated with the morphological evolution of the active layer with prolonged heating time.

2012 ◽  
Vol 535-537 ◽  
pp. 1287-1290
Author(s):  
Zhan Chun Xu ◽  
Hong Sen Zhang ◽  
Zhe Li ◽  
Xue Shun Yang ◽  
Gang Zhang

ICMA and its derivatives, high performance acceptor of polymer solar cells, have received most attention in experimental and theoretical studies. In this work, we calculated electronic structures and spectroscopic properties of the ICMA by density functional theory (DFT) using B3LYP method. The geometrical structure data show that indene has little influence on C60. In comparison with [6,6]-phenyl C61-butyric acid methyl ester (PCBM), It was proved theoretically that ICMA possesses a better photovoltaic performance and higher LUMO energy level. ICMA and its derivatives could be a promising new acceptor which further improve the power conversion efficiency of the high performance polymer solar cells. The research indicates that the frontier molecular orbital are mainly localized on the C60 sphere, which shows carbon number of cage is an important factor leading to the change of optical and electrical properties. The present study provides theoretical supporting for further application of the ICMA and its derivatives in molecular design and structure-activity relationships research.


2015 ◽  
Vol 2015 ◽  
pp. 1-8 ◽  
Author(s):  
Hanyu Wang ◽  
Xiao Wang ◽  
Pu Fan ◽  
Xin Yang ◽  
Junsheng Yu

The effect of molecular doping with TIPS-pentacene on the photovoltaic performance of polymer solar cells (PSCs) with a structure of ITO/ZnO/poly(3-hexylthiophene-2,5-diyl) (P3HT) : [6,6]-phenyl C71-butyric acid methyl ester (PC71BM) : TIPS-pentacene/MoOx/Ag was systematically investigated by adjusting TIPS-pentacene doping ratios ranged from 0.3 to 1.2 wt%. The device with 0.6 wt% TIPS-pentacene exhibited the enhanced short-circuit current and fill factor by 1.23 mA/cm2and 7.8%, respectively, resulting in a maximum power conversion efficiency of 4.13%, which is one-third higher than that of the undoped one. The photovoltaic performance improvement was mainly due to the balanced charge carrier mobility, enhanced crystallinity, and matched cascade energy level alignment in TIPS-pentacene doped active layer, resulting in the efficient charge separation, transport, and collection.


2017 ◽  
Vol 7 (1) ◽  
Author(s):  
Binrui Xu ◽  
Sai-Anand Gopalan ◽  
Anantha-Iyengar Gopalan ◽  
Nallal Muthuchamy ◽  
Kwang-Pill Lee ◽  
...  

Abstract Poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) is most commonly used as an anode buffer layer in bulk-heterojunction (BHJ) polymer solar cells (PSCs). However, its hygroscopic and acidic nature contributes to the insufficient electrical conductivity, air stability and restricted photovoltaic (PV) performance for the fabricated PSCs. In this study, a new multifunctional additive, 2,3-dihydroxypyridine (DOH), has been used in the PEDOT: PSS buffer layer to obtain modified properties for PEDOT: PSS@DOH and achieve high PV performances. The electrical conductivity of PEDOT:PSS@DOH films was markedly improved compared with that of PEDOT:PSS. The PEDOT:PSS@DOH film exhibited excellent optical characteristics, appropriate work function alignment, and good surface properties in BHJ-PSCs. When a poly(3-hexylthiohpene):[6,6]-phenyl C61-butyric acid methyl ester blend system was applied as the photoactive layer, the power conversion efficiency of the resulting PSCs with PEDOT:PSS@DOH(1.0%) reached 3.49%, outperforming pristine PEDOT:PSS, exhibiting a power conversion enhancement of 20%. The device fabricated using PEDOT:PSS@DOH (1.0 wt%) also exhibited improved thermal and air stability. Our results also confirm that DOH, a basic pyridine derivative, facilitates adequate hydrogen bonding interactions with the sulfonic acid groups of PSS, induces the conformational transformation of PEDOT chains and contributes to the phase separation between PEDOT and PSS chains.


Materials ◽  
2021 ◽  
Vol 14 (12) ◽  
pp. 3206
Author(s):  
Hailiang Liu ◽  
Sajjad Hussain ◽  
Jehoon Lee ◽  
Dhanasekaran Vikraman ◽  
Jungwon Kang

Two-dimensional (2D) tungsten diselenide (WSe2) has attracted considerable attention in the field of photovoltaic devices owing to its excellent structure and photoelectric properties, such as ordered 2D network structure, high electrical conductivity, and high mobility. For this test, we firstly prepared different sizes (NS1–NS3) of WSe2 nanosheets (NSs) through the ultrasonication method and characterized their structures using the field emission scanning electron microscope (FE-SEM), Raman spectroscopy, and X-ray powder diffraction. Moreover, we investigated the photovoltaic performance of polymer solar cells based on 5,7-Bis(2-ethylhexyl)benzo[1,2-c:4,5-c′]dithiophene-4,8-dione(PBDB-T):(6,6)-phenyl-C71 butyric acid methyl ester (PCBM) with different WSe2 NSs as the active layer. The fabricated PBDB-T:PCBM active layer with the addition of NS2 WSe2 NSs (1.5 wt%) exhibited an improved power conversion efficiency (PCE) of 9.2%, which is higher than the pure and NS1 and NS3 WSe2 blended active layer-encompassing devices. The improved PCE is attributed to the synergic enhancement of exciton dissociation and an improvement in the charge mobility through the modified active layer for polymer solar cells. Furthermore, the highest sensitivity of 2.97 mA/Gy·cm2 was achieved for the NS2 WSe2 NSs blended active layer detected by X-ray exposure over the pure polymer, and with the NS1 and NS2 WSe2 blended active layer. These results led to the use of transition metal dichalcogenide materials in polymer solar cells and X-ray detectors.


Polymers ◽  
2021 ◽  
Vol 13 (13) ◽  
pp. 2152
Author(s):  
E. M. Mkawi ◽  
Y. Al-Hadeethi ◽  
R. S. Bazuhair ◽  
A. S. Yousef ◽  
E. Shalaan ◽  
...  

In this study, polymer solar cells were synthesized by adding Sb2S3 nanocrystals (NCs) to thin blended films with polymer poly(3-hexylthiophene)(P3HT) and [6,6]-phenyl-C61-butyric-acid-methyl-ester (PCBM) as the p-type material prepared via the spin-coating method. The purpose of this study is to investigate the dependence of polymer solar cells’ performance on the concentration of Sb2S3 nanocrystals. The effect of the Sb2S3 nanocrystal concentrations (0.01, 0.02, 0.03, and 0.04 mg/mL) in the polymer’s active layer was determined using different characterization techniques. X-ray diffraction (XRD) displayed doped ratio dependences of P3HT crystallite orientations of P3HT crystallites inside a block polymer film. Introducing Sb2S3 NCs increased the light harvesting and regulated the energy levels, improving the electronic parameters. Considerable photoluminescence quenching was observed due to additional excited electron pathways through the Sb2S3 NCs. A UV–visible absorption spectra measurement showed the relationship between the optoelectronic properties and improved surface morphology, and this enhancement was detected by a red shift in the absorption spectrum. The absorber layer’s doping concentration played a definitive role in improving the device’s performance. Using a 0.04 mg/mL doping concentration, a solar cell device with a glass /ITO/PEDOT:PSS/P3HT-PCBM: Sb2S3:NC/MoO3/Ag structure achieved a maximum power conversion efficiency of 2.72%. These Sb2S3 NCs obtained by solvothermal fabrication blended with a P3HT: PCBM polymer, would pave the way for a more effective design of organic photovoltaic devices.


Author(s):  
Hoseon You ◽  
Austin Jones ◽  
Boo Soo Ma ◽  
Geon-U Kim ◽  
Seungjin Lee ◽  
...  

In this study, two wide-bandgap PM7 polymer derivatives are developed via simple structural modification of the fused-accepting unit by incorporating ester groups on terthiophene at different positions (i.e., two ester...


RSC Advances ◽  
2020 ◽  
Vol 10 (71) ◽  
pp. 43508-43513
Author(s):  
Di Zhao ◽  
Pengcheng Jia ◽  
Ling Li ◽  
Yang Tang ◽  
Qiuhong Cui ◽  
...  

The use of ternary polymer solar cells (PSCs) is a promising strategy to enhance photovoltaic performance while improving the fill factor (FF) of a device, but is still a challenge due to the complicated morphology.


2016 ◽  
Vol 98 ◽  
pp. 26-31 ◽  
Author(s):  
Keisuke Sato ◽  
Yuuki Sugano ◽  
Kenji Hirakuri ◽  
Naoki Fukata

We report on the structural characterization and the photovoltaic performances of novel photoelectric conversion materials fabricated by simplified and cheap procedures based on a chemical approach. Our prepared composite microparticles were composed of fluorosilicate/phosphorus oxide holding together by ammonium. When such composite microparticles were used in the active layer of the hybrid solar cells, the relatively high Jsc was obtained by causing the adequate carrier transport from the active layer to each electrode, attaining the best photovoltaic performance with a PCE of 4.45 %. These findings indicate that the fluorosilicate/phosphorus oxide composite microparticles have sufficient ability as the photoelectric conversion materials.


Nanoscale ◽  
2018 ◽  
Vol 10 (18) ◽  
pp. 8483-8495 ◽  
Author(s):  
Shengli Niu ◽  
Zhiyong Liu ◽  
Ning Wang

A dihydronaphthyl-based C60 bisadduct (NCBA) acceptor was introduced as a third component material to typical binary polymer solar cells (PSCs).


Sign in / Sign up

Export Citation Format

Share Document