scholarly journals Antimicrobial Resistance of Salmonella enterica Isolates from Tonsil and Jejunum with Lymph Node Tissues of Slaughtered Swine in Metro Manila, Philippines

2014 ◽  
Vol 2014 ◽  
pp. 1-9 ◽  
Author(s):  
Kamela Charmaine S. Ng ◽  
Windell L. Rivera

Due to frequent antibiotic exposure, swine is now recognized as potential risk in disseminating drug-resistant Salmonella enterica strains. This study thus subjected 20 randomly selected S. enterica isolates from tonsil and jejunum with lymph node (JLN) tissues of swine slaughtered in Metro Manila, Philippines, to VITEK 2 antimicrobial susceptibility testing (AST). The test revealed all 20 isolates had resistance to at least one antimicrobial agent, in which highest occurrence of resistance was to amikacin (100%), cefazolin (100%), cefuroxime (100%), cefuroxime axetil (100%), cefoxitin (100%), and gentamicin (100%), followed by ampicillin (50%), and then by sulfamethoxazole trimethoprim (30%). Three multidrug-resistant (MDR) isolates were detected. The sole S. enterica serotype Enteritidis isolate showed resistance to 12 different antibiotics including ceftazidime, ceftriaxone, amikacin, gentamicin, and tigecycline. This study is the first to report worldwide on the novel resistance to tigecycline of MDR S. enterica serotype Enteritidis isolated from swine tonsil tissues. This finding poses huge therapeutic challenge since MDR S. enterica infections are associated with increased rate of hospitalization or death. Thus, continual regulation of antimicrobial use in food animals and prediction of resistant serotypes are crucial to limit the spread of MDR S. enterica isolates among hogs and humans.

2021 ◽  
pp. 1922-1928
Author(s):  
Hamzah Abdulrahman Salman ◽  
Ali Mohammed Abdulmohsen ◽  
Mays Noori Falih ◽  
Zahraa Mohmoud Romi

Background and Aim: Enteric fever initiated by Salmonella enterica subsp. enterica serovar Typhi (S. Typhi) is among the most consistent disease worldwide, particularly in developing countries. The present study aimed to isolate and identify S. Typhi from typhoid suspected patients and determine their antibacterial susceptibility testing. Materials and Methods: Thirty blood samples were collected from typhoid suspected patients in Baghdad, Iraq. The samples were cultured on SS agar and XLD agar for screening of S. Typhi. The suspected colonies were picked up and subjected to Vitek 2 compact for biochemical identification and antibacterial susceptibility testing of the organisms. Molecular identification of the isolates was performed by real-time polymerase chain reaction (RT-PCR). Results: Black colonies were observed on cultured plates. Out of 30 samples, 27 and 29 isolates were identified as S. Typhi using Vitek 2 compact and RT-PCR, respectively. The data of the present study revealed that the strains of S. Typhi were showing multidrug resistance. All S. Typhi strains exhibited resistance to penicillins (ticarcillin and piperacillin), cephalosporins 4th G (cefepime), and monobactam (aztreonam). However, all the strains showed susceptibility against carbapenems (imipenem and meropenem) and tetracycline (minocycline). Conclusion: RT-PCR and Vitek 2 compact showed a high level of accuracy in the detection of S. Typhi. Multidrug resistance was observed, which is an alert for the reduction of antibiotic consumption.


2017 ◽  
Vol 61 (11) ◽  
Author(s):  
Susanne Jacobsson ◽  
Susanne Paukner ◽  
Daniel Golparian ◽  
Jörgen S. Jensen ◽  
Magnus Unemo

ABSTRACT We evaluated the activity of the novel semisynthetic pleuromutilin lefamulin, inhibiting protein synthesis and growth, and the effect of efflux pump inactivation on clinical gonococcal isolates and reference strains (n = 251), including numerous multidrug-resistant and extensively drug-resistant isolates. Lefamulin showed potent activity against all gonococcal isolates, and no significant cross-resistance to other antimicrobials was identified. Further studies of lefamulin are warranted, including in vitro selection and mechanisms of resistance, pharmacokinetics/pharmacodynamics, optimal dosing, and performance in randomized controlled trials.


2003 ◽  
Vol 47 (6) ◽  
pp. 2006-2008 ◽  
Author(s):  
Hyunjoo Pai ◽  
Jeong-hum Byeon ◽  
Sunmi Yu ◽  
Bok Kwon Lee ◽  
Shukho Kim

ABSTRACT Six strains of Salmonella enterica serovar Typhi which were resistant to ampicillin, chloramphenicol, trimethoprim-sulfamethoxazole, streptomycin, tetracycline, and gentamicin were isolated in Korea. This multidrug resistance was transferred by a conjugative plasmid of about 50 kb. The plasmid harbored a class 1 integron, which included six resistance genes, aacA4b, catB8, aadA1, dfrA1, aac(6′)-IIa, and the novel blaP2, in that order. All of the isolates showed the same-size plasmids and the same ribotyping patterns, which suggests a clonal spread of these multidrug-resistant isolates.


2019 ◽  
Vol 147 ◽  
Author(s):  
R. S. Salvato ◽  
S. Schiefelbein ◽  
R. B. Barcellos ◽  
B. M. Praetzel ◽  
I. S. Anusca ◽  
...  

AbstractTuberculosis (TB) is the leading cause of death among infectious diseases worldwide. Among the estimated cases of drug-resistant TB, approximately 60% occur in the BRICS countries (Brazil, Russia, India, China and South Africa). Among Brazilian states, primary and acquired multidrug-resistant TB (MDR-TB) rates were the highest in Rio Grande do Sul (RS). This study aimed to perform molecular characterisation of MDR-TB in the State of RS, a high-burden Brazilian state. We performed molecular characterisation of MDR-TB cases in RS, defined by drug susceptibility testing, using 131Mycobacterium tuberculosis (M.tb)DNA samples from the Central Laboratory. We carried out MIRU-VNTR 24loci, spoligotyping, sequencing of thekatG,inhA andrpoB genes and RDRiosublineage identification. The most frequent families found were LAM (65.6%) and Haarlem (22.1%). RDRiodeletion was observed in 42 (32%) of theM.tbisolates. Among MDR-TB cases, eight (6.1%) did not present mutations in the studied genes. In 116 (88.5%)M.tbisolates, we found mutations associated with rifampicin (RIF) resistance inrpoB gene, and in 112 isolates (85.5%), we observed mutations related to isoniazid resistance inkatG andinhA genes. An insertion of 12 nucleotides (CCAGAACAACCC) at the 516 codon in therpoB gene, possibly responsible for a decreased interaction of RIF and RNA polymerase, was found in 19/131 of the isolates, belonging mostly to LAM and Haarlem families. These results enable a better understanding of the dynamics of transmission and evolution of MDR-TB in the region.


2016 ◽  
Vol 2016 ◽  
pp. 1-5 ◽  
Author(s):  
Louie Mar Gangcuangco ◽  
Patricia Clark ◽  
Cynthia Stewart ◽  
Goran Miljkovic ◽  
Zane K. Saul

Ceftazidime-avibactam and ceftolozane-tazobactam are new antimicrobials with activity against multidrug-resistantPseudomonas aeruginosa. We present the first case of persistentP.aeruginosabacteremia within vitroresistance to these novel antimicrobials. A 68-year-old man with newly diagnosed follicular lymphoma was admitted to the medical intensive care unit for sepsis and right lower extremity cellulitis. The patient was placed empirically on vancomycin and piperacillin-tazobactam. Blood cultures from Day 1 of hospitalization grewP.aeruginosasusceptible to piperacillin-tazobactam and cefepime identified using VITEK 2 (Biomerieux, Lenexa, KS). Repeat blood cultures from Day 5 grewP.aeruginosaresistant to all cephalosporins, as well as to meropenem by Day 10. Susceptibility testing performed by measuring minimum inhibitory concentration byE-test (Biomerieux, Lenexa, KS) revealed that blood cultures from Day 10 were resistant to ceftazidime-avibactam and ceftolozane-tazobactam. The Verigene Blood Culture-Gram-Negative (BC-GN) microarray-based assay (Nanosphere, Inc., Northbrook, IL) was used to investigate underlying resistance mechanism in theP.aeruginosaisolate but CTX-M, KPC, NDM, VIM, IMP, and OXA gene were not detected. This case report highlights the well-documented phenomenon of antimicrobial resistance development inP.aeruginosaeven during the course of appropriate antibiotic therapy. In the era of increasing multidrug-resistant organisms, routine susceptibility testing ofP. aeruginosato ceftazidime-avibactam and ceftolozane-tazobactam is warranted. Emerging resistance mechanisms to these novel antibiotics need to be further investigated.


2004 ◽  
Vol 48 (11) ◽  
pp. 4130-4135 ◽  
Author(s):  
Kyungwon Lee ◽  
Dongeun Yong ◽  
Jong Hwa Yum ◽  
Young Sik Lim ◽  
Hyun Sook Kim ◽  
...  

ABSTRACT A chloramphenicol-resistant strain of Salmonella enterica serovar Typhi was first noted in Korea in 1992, when a resistant isolate was detected in a returned traveler. Continued isolation of multidrug-resistant (MDR) strains thereafter in other settings prompted a retrospective analysis of laboratory records and phenotypic and genotypic analyses of 12 chloramphenicol-resistant isolates. Among these, one isolate was resistant only to chloramphenicol, and the other isolates were also resistant to ampicillin and co-trimoxazole. MDR was transferred by conjugation from 9 of the 11 isolates. PCR showed that all isolates had an incompatible group HI1 plasmid, and oriT was detected in 10 isolates, which included strains with an unsuccessful transfer of resistance. All of the ampicillin-resistant isolates had a β-lactamase band of pI 5.4 and bla TEM alleles. A PCR amplicon from an isolate showed that the sequences were identical to those of bla TEM-1, suggesting that all isolates had a TEM-1 β-lactamase. All isolates had class 1 integrons: 10 isolates had integrons of ca. 1.2 kb with dhfr7 gene cassettes, and 1 isolate had an integron of ca. 2.3 kb with aacA4 and bla OXA-1-like gene cassettes. The pulsed-field gel electrophoresis patterns of 7 of 11 MDR isolates were identical and indistinguishable from those reported for isolates in India and Indonesia. In conclusion, some of the MDR strains in Korea are related to those in other Asian countries. Susceptibility testing became necessary for selection of antimicrobial agents for the optimal treatment of patients with the emergence of MDR Salmonella serovar Typhi in Korea.


2020 ◽  
Vol 2020 ◽  
pp. 1-7
Author(s):  
Adane Bitew ◽  
Estifanos Tsige

Background. Multidrug-resistant Enterobacteriaceae particularly extended-spectrum beta-lactamase producers have become a major public health threat. Despite efforts to limit their spread, rates of multidrug-resistance members of the Enterobacteriaceae continue to increase throughout the world causing increased morbidity and mortality and raised costs for medical care. Objective. The aim of this study was to determine the prevalence of multidrug resistance and extended-spectrum β-lactamase-producing Enterobacteriaceae. Methods. Four hundred forty Enterobacteriaceae isolates from outpatients referred to Arsho Advanced Medical Laboratory were identified and assessed for their antimicrobial resistance pattern by using the automated VITEK 2 compact system. Extended-spectrum β-lactamase production was determined by the VITEK 2 automated compact system using the extended-spectrum β-lactamase test panel as per the instruction of the manufacturer. Results. The overall resistance rates of Enterobacteriaceae against cephalosporins, aminoglycosides, and fluoroquinolones were high. Nitrofurantoin with a resistance rate of 14.3% and piperacillin/tazobactam combination with a resistance rate of 17.3% were better active against this group of Gram-negative bacteria. Out of 440 isolates of Enterobacteriaceae, 42.1% were multidrug-resistant of which 34.3% and 8.95% were extensively drug-resistant and pan-drug resistant, respectively. Among 185 multidrug-resistant Enterobacteriaceae, 63.9% of the isolates produced extended-spectrum β-lactamase of which 75.4%, 19.5%, 1.7%, 2.5%, and 0.8% were E. coli, K. pneumoniae, C. freundii, E. cloacae, and P. mirabilis, respectively. Conclusions. The present study demonstrated high prevalence rates of multidrug-resistant and extended-spectrum-beta-lactamase-producing Enterobacteriaceae. In order to combat these problems, infection control strategy and proper antibiotic policies should be formulated.


Author(s):  
Eric R Houpt ◽  
Tahsin Ferdous ◽  
Rifat Ara ◽  
Momena Ibrahim ◽  
Md Masud Alam ◽  
...  

Abstract Background Azithromycin is frequently used to treat shigellosis; however, clinical outcomes are uncertain. Methods We performed an observational cohort study in Bangladesh of patients with invasive diarrhea treated empirically with azithromycin. Susceptibility testing was performed by broth microdilution and disk diffusion post hoc on all Shigella isolates and clinical response was correlated with in vitro susceptibility. Results There were 149 Shigella culture-positive patients in the primary analysis. Infection with Shigella with decreased susceptibility to azithromycin was significantly associated with persistence of diarrhea at day 5 (31% vs 12%; relative risk [RR], 2.66; 95% confidence interval [CI], 1.34–5.28), culture positivity at day 5 or 6 (35% vs 5%; RR, 5.26; 95% CI, 1.84–14.85), and a higher rate of overnight hospitalization (58% vs 39%; RR, 1.49; 95% CI, 1.06–2.09). Shigella flexneri was more common than Shigella sonnei (58% vs 36%); however, S. sonnei constituted most of the isolates with decreased susceptibility to azithromycin (67%) and most of the multidrug-resistant strains (54%); thus, poor clinical outcomes were associated with S. sonnei. The current epidemiological cutoff for S. flexneri of ≥16 µg/mL to define decreased susceptibility to azithromycin was clinically predictive of poor outcome. Patients with S. sonnei and a low MIC (4 µg/mL) still had elevated rates of persistent diarrhea and culture positivity. Conclusions This study documents worse clinical outcomes for S. flexneri with decreased susceptibility to azithromycin, as well as S. sonnei, and supports the utility of susceptibility testing and clinical breakpoints for azithromycin. S. sonnei is an emerging drug-resistant threat. Clinical Trials Registration NCT03778125.


Sign in / Sign up

Export Citation Format

Share Document