scholarly journals Synthesis of Novel YbxSb2 − xTe3Hexagonal Nanoplates: Investigation of Their Physical, Structural, and Photocatalytic Properties

2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
Younes Hanifehpour ◽  
Sang Woo Joo

Yb-doped Sb2Te3nanomaterials were synthesized by a coreduction method in hydrothermal condition. Powder X-ray diffraction patterns indicate that theYbxSb2−xTe3crystals (x=0.00–0.05) are isostructural with Sb2Te3. The cell parameteradecreases forYbxSb2−xTe3compounds upon increasing the dopant content (x), whilecincreases. Scanning electron microscopy and transmission electron microscopy images show that doping of Yb3+ions in the lattice of Sb2Te3produces different morphology. The electrical conductivity of Yb-doped Sb2Te3is higher than the pure Sb2Te3and increases with temperature. By increasing concentration of the Yb3+ions, the absorption spectrum of Sb2Te3shows red shifts and some intensity changes. In addition to the characteristic red emission peaks of Sb2Te3, emission spectra of doped materials show other emission bands originating fromf-ftransitions of the Yb3+ions. The photocatalytic performance of as-synthesized nanoparticles was investigated towards the decolorization of Malachite Green solution under visible light irradiation.

2009 ◽  
Vol 24 (8) ◽  
pp. 2476-2482
Author(s):  
Kyu H. Lee ◽  
Jeong Y. Lee ◽  
Y.H. Kwon ◽  
Tae W. Kang ◽  
Dong H. Kim ◽  
...  

X-ray diffraction patterns, scanning electron microscopy images, and transmission electron microscopy images showed that one-dimensional GaN nanorods with [0001]-oriented single-crystalline wurtzite structures were grown on Al2O3 (0001) substrates by hydride vapor-phase epitaxy without a catalyst. The tip morphology of the GaN nanorods became flat with increasing temperature difference between the gas mixing and the substrate zones. The gas mixing temperature significantly affected the formation of the nanorods, and the substrate temperature influenced the morphology and the strain of the GaN nanorods near the GaN/Al2O3 heterointerface. The strain and the stress existing in the GaN layer near the heterointerface were decreased with increasing growth rate. The formation mechanisms of the GaN nanorods grown on the Al2O3 (0001) substrates are described on the basis of the experimental results.


Author(s):  
Chia-Hung Kuo ◽  
Chii-Shyang Hwang ◽  
Jie-Ren Ku ◽  
Ming-Shan Jeng ◽  
Fang-Hei Tsau

PbTe is a conventional thermoelectric material for thermoelectric generator at intermediate temperature. Small grain size effect has been reported to improve PbTe ZT values (figure of merit). We report a combination process of attrition milling and spark plasma sintering (SPS) for preparing PbTe bulk materials with small grain sizes. The PbTe powders were milled by attrition under 600 rpm for 6–96 h and followed by SPS process under the sintering temperature of 573–773 K, the heating rate of 100 K/min, and the sintering pressure of 50 MPa. The powders and bulk materials as-prepared were then studied by X-ray diffraction patterns, scanning electron microscopy images, and transmission electron microscopy images. Transport properties of polycrystalline PbTe bulks were evaluated through temperature dependent thermal conductivity measurements.


2015 ◽  
Vol 68 (8) ◽  
pp. 1293 ◽  
Author(s):  
Pakvipar Chaopanich ◽  
Punnama Siriphannon

Hydroxyapatite (HAp) nanoparticles were successfully synthesized from an aqueous mixture of Ca(NO3)2·4H2O and (NH4)2HPO4 by a facile single-step refluxing method using polystyrene sulfonate (PSS) as a template. The effects of reaction times, pH, and PSS concentration on the HAp formation were investigated. It was found that the crystalline HAp was obtained under all conditions after refluxing the precursors for 3 and 6 h. The longer refluxing time, the greater the crystallinity and the larger the crystallite size of the HAp nanoparticles. The HAp with poor crystallinity was obtained at pH 8.5; however, the well-crystallized HAp was obtained when reaction pH was increased to 9.5 and 10.5. In addition, the X-ray diffraction patterns revealed that the presence of PSS template caused the reduction of HAp crystallite size along the (002) plane from 52.6 nm of non-template HAp to 43.4 nm and 41.4 nm of HAp with 0.05 and 0.2 wt-% PSS template, respectively. Transmission electron microscopy images of the synthesized HAp revealed the rod-shaped crystals of all samples. The synthesized HAp nanoparticles were modified by l-aspartic acid (Asp) and l-arginine (Arg), having negative and positive charges, respectively. It was found that the zeta potential of HAp was significantly changed from +5.46 to –24.70 mV after modification with Asp, whereas it was +4.72 mV in the Arg-modified HAp. These results suggested that the negatively charged amino acid was preferentially adsorbed onto the synthesized HAp surface.


Author(s):  
Karthik Ramasamy ◽  
Weerakanya Maneerprakorn ◽  
Mohammad A. Malik ◽  
Paul O'Brien

Cobalt complexes of 1,1,5,5-tetramethyl-2,4-dithiobiuret, [Co{N(SCNMe 2 ) 2 } 3 ] ( 1 ), and 1,1,5,5-tetraisopropyl-2-thiobiuret, [Co{N(SOCN i Pr 2 ) 2 } 2 ] ( 2 ), have been synthesized and characterized. Both complexes were used as single-molecule precursors for the preparation of cobalt sulphide nanoparticles by thermolysis in hexadecylamine, octadecylamine or oleylamine. The powder X-ray diffraction pattern of as-prepared nanoparticles showed the hexagonal phase of Co 1− x S from complex 1 and mixtures of cubic and hexagonal Co 4 S 3 from complex 2 . Transmission electron microscopy images of material prepared from complex 1 showed spherical and trigonally shaped particles in the size range of 10–15 nm; whereas spheres, rods, trigonal prisms and pentagonally and hexagonally faceted crystallites were observed from complex 2 . This observation is the first of the Co 4 S 3 phase in a nanodispersed form.


2010 ◽  
Vol 25 (10) ◽  
pp. 2035-2041 ◽  
Author(s):  
Zhiguo Xia ◽  
Peng Du

CaF2:Yb3+,Er3+ upconversion (UC) luminescence nanoparticles have been synthesized using mesoporous silica (SBA-15) as a hard template. The samples were characterized by x-ray diffraction, Fourier transform infrared spectra, field-emission scanning electron microscopy, transmission electron microscopy, and UC emission spectra, respectively. Highly crystalline cubic phase CaF2:Yb3+,Er3+ nanoparticles are uniformly distributed with an average diameter of about 40–50 nm, and the formation process is also demonstrated. The UC fluorescence has been realized in the as-prepared CaF2:Yb3+,Er3+ nanoparticles on 980-nm excitation. The UC emission transitions for 4F9/2–4I15/2 (red), 2H11/2–4I15/2 (green), 4S3/2–4I15/2 (green), and 2H9/2–4I15/2 (violet) in the Yb3+/Er3+ codoped CaF2 nanoparticles depending on pumping power and temperature have been discussed. The UC mechanism, especially the origin on the temperature-dependent UC emission intensities ratio between 2H11/2 and 4S3/2 levels, have been proposed.


2019 ◽  
Vol 4 (3) ◽  
pp. 68-72
Author(s):  
Ana Maria Herrera ◽  
Godofredo García ◽  
Erick Gastellóu ◽  
Fabiola Nieto ◽  
Rafael García ◽  
...  

Hexagonal nanocrystals into Al0.2Ga0.8N and Al0.6Ga0.4N powders via pyrolysis from an organometallic compound, followed by a nitridation process in ammonia flow at 1000 °C for two hours were obtained. X-ray diffraction patterns demonstrated a shift towards greater angles to the right for the AlGaN powders with respect to GaN powders, this shift could indicate the formation of the AlGaN powders. Scanning electron microscopy micrographs showed the obtaining from semi-plates of porous appearance for the Al0.2Ga0.8N powders until well-defined plates for the Al0.6Ga0.4N powders. High resolution transmission electron microscopy micrographs demonstrated the presence of hexagonal nanocrystals into Al0.2Ga0.8N powders with an average crystal size of 10.3 nm, while that for the Al0.6Ga0.4N powders an average crystal size of 9.7 nm was observed. UV-visible spectra showed a transmittance cut-off for the Al0.2Ga0.8N powders of 3.71 eV (334.2 nm) and a transmittance cut-off of 4.53 eV (273.7 nm) for the Al0.6Ga0.4N powders.


2016 ◽  
Vol 13 (10) ◽  
pp. 7408-7415
Author(s):  
Yongxing Li ◽  
Qiong Xiao ◽  
Qin Yin ◽  
Hui Ni ◽  
Yanbing Zhu ◽  
...  

Arylsulfatase, one of a few enzymes that can enhance the gelling strength of agar by cleaving the sulfate ester bonds in agar, was covalently immobilized with carboxyl functioned magnetic nanoparticles (CMNPs). The resultant CMNPs and immobilized arylsulfatase were characterized by transmission electron microscopy (TEM), Dynamic Light scattering (DLS), X-ray diffraction (XRD), vibrating sample magnetometry (VSM) and thermogravimetric analysis (TGA). The TEM result indicated that the CMNPs and immobilized arylsulfatase had a similar mean particle size of 10 nm. The arylsulfatase-CMNPs had a mean diameter of 1200 nm in aqueous solution determined by the DLS, which was much bigger than the CMNPs (433.6 nm). The different sizes demonstrated that the arylsulfatase was coated on CMNPs successfully. XRD showed that diffraction patterns of the CMNPs and arylsulfatase-CMNPs were close to the standard XRD pattern of Fe3O4. Saturation magnetizations were 52.1 emu/g for carriers and 47.9 emu/g for immobilized arylsulfatase, which indicated that the particles had superparamagnetic characteristics. The TGA revealed that the amount of arylsulfatase bound to the surface of CMNPs was 5.65%. The arylsulfatase exhibited better thermal stability and reusability after immobilization, the immobilized arylsulfatase can retain more than 50% enzyme activity up to the 9th cycle.


2008 ◽  
Vol 8 (12) ◽  
pp. 6406-6413 ◽  
Author(s):  
F. Paraguay-Delgado ◽  
R. García-Alamilla ◽  
J. A. Lumbreras ◽  
E. Cizniega ◽  
G. Alonso-Núñez

Two trimetallic sulfurs, MoWNiS and MoWSNi, were synthesized to be used as a catalyst in hydrodesulfurization reactions. The mixed oxide mesoporous nanostructured MoO3-WO3 with an Mo:W atomic ratio of 1:1 was used as the precursor. The first catalyst was prepared by impregnating nickel in the oxide precursor and then subsequent sulfiding with an H2S/H2 mix at 400 °C for 2 hours. The second catalyst was prepared by sulfiding the precursor and then impregnating the nickel, and finally reducing the material with a H2/N2 at 350 °C. In both catalysts the Mo:W:Ni atomic ratio was maintained at 1:1:0.5. The materials obtained were characterized by physical adsorption of nitrogen, X-ray diffraction, scanning electron microscopy, transmission electron microscopy. Furthermore, the materials obtained were evaluated by a dibenzothiophene hydrodesulfuration reaction. The diffraction patterns show that both materials are polycrystalline and mainly of MoS2 and WS2 phases.


2009 ◽  
Vol 1216 ◽  
Author(s):  
Fu Tang ◽  
Gwo Ching Wang ◽  
Toh-Ming Lu

AbstractWe describe the growth of novel ultrathin Mg crystalline nanoblades by oblique angle vapor deposition. These nanoblades were then coated with catalyst Pd and hydrogenated into magnesium hydride MgH2. In situ thermal desorption spectroscopy study showed a low H desorption temperature at ∼365 K. In situ reflection high energy electron diffraction patterns were used to study the temperature dependent structure and composition changes during the de-hydrogenation of Pd coated MgH2 nanoblades. The diffraction rings reveal the formation of alloys of Pd and Mg when the temperature is over ∼480 K. Transmission electron microscopy diffraction also supports the formation of Pd and Mg alloys. This alloying reduces the cycling capability of Mg hydride. The de-hydrogenation of MgH2 introduces a strain at the bilayer interface between MgH2 and Mg resultant from 30% volume reduction from MgH2 to Mg and formed curved nanoblades as evident by scanning electron microscopy images. Designing factors of recyclable simple hydrides will be discussed.


2009 ◽  
Vol 24 (1) ◽  
pp. 58-65 ◽  
Author(s):  
Yange Zhang ◽  
Zhi Zheng ◽  
Ka Wai Wong ◽  
Fengling Yang ◽  
Zude Zhang

The α-, β-, and δ-MnO2 with various morphologies have been synthesized by a novel redox system of KMnO4 and CuCl with HCl added under a hydrothermal condition. The resultant MnO2 products have been characterized by x-ray diffraction, scanning electron microscopy, and transmission electron microscopy. Upon control of reaction temperature and duration, it was observed that MnO2 polymorphs of different morphology (e.g., flowery δ-MnO2, β-MnO2 nanowires and octahedrons, α-MnO2 nanowires) can be prepared in an adjustable manner. The phenomenon is mainly attributed to the effect of cuprous ions controllably released from CuCl by the action of HCl at different experimental conditions. The corresponding formation mechanism for the MnO2 crystals will also be proposed and discussed.


Sign in / Sign up

Export Citation Format

Share Document