Synthesis and upconversion luminescence properties of CaF2:Yb3+,Er3+ nanoparticles obtained from SBA-15 template

2010 ◽  
Vol 25 (10) ◽  
pp. 2035-2041 ◽  
Author(s):  
Zhiguo Xia ◽  
Peng Du

CaF2:Yb3+,Er3+ upconversion (UC) luminescence nanoparticles have been synthesized using mesoporous silica (SBA-15) as a hard template. The samples were characterized by x-ray diffraction, Fourier transform infrared spectra, field-emission scanning electron microscopy, transmission electron microscopy, and UC emission spectra, respectively. Highly crystalline cubic phase CaF2:Yb3+,Er3+ nanoparticles are uniformly distributed with an average diameter of about 40–50 nm, and the formation process is also demonstrated. The UC fluorescence has been realized in the as-prepared CaF2:Yb3+,Er3+ nanoparticles on 980-nm excitation. The UC emission transitions for 4F9/2–4I15/2 (red), 2H11/2–4I15/2 (green), 4S3/2–4I15/2 (green), and 2H9/2–4I15/2 (violet) in the Yb3+/Er3+ codoped CaF2 nanoparticles depending on pumping power and temperature have been discussed. The UC mechanism, especially the origin on the temperature-dependent UC emission intensities ratio between 2H11/2 and 4S3/2 levels, have been proposed.

2016 ◽  
Vol 16 (4) ◽  
pp. 3961-3964
Author(s):  
Weiye Song ◽  
Xueqing Bi ◽  
Xingyuan Guo ◽  
Shushen Liu ◽  
Weiping Qin

In this work the effects of NaYF4:Yb, Er (NYE) structure on the enhanced red upconversion luminescence (UC) was investigated. -NYE nanocrystals (NCs) and -NYE NCs were fabricated by a high temperature decomposition reaction method. The prepared NCs were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), and photoluminescence (PL) spectroscopy. The results show that the red UC luminescence of -NYE NCs is significantly enhanced compared with that of -NYE. Furthermore, a possible energy transfer mechanism was proposed on the basis of our experimental results.


2016 ◽  
Vol 16 (4) ◽  
pp. 3744-3748 ◽  
Author(s):  
Yuan Gao ◽  
Yuebo Hu ◽  
Dacheng Zhou ◽  
Jianbei Qiu

Transparent oxyflouride glass ceramics composed of SiO2–Al2O3–Na2O–NaF–YF3 tri-coped with Nd3+/Yb3+/Ho3+ were prepared by thermal treatment. Segregation of NaYF4 nanocrystals in the matrix was confirmed from structural analysis by means of X-ray diffraction and transmission electron microscopy. Compared with glass samples, very strong green upconversion (UC) luminescence due to the Ho3+:(4F5, 5S2)→5I8 transition was observed in the glass ceramics under 808 nm excitation. It was found that upconversion intensity of Ho3+ strongly depends on the Nd3+ concentration, and the energy transfer process from Nd3+ to Ho3+ via Yb3+ was proposed.


2016 ◽  
Vol 87 (1) ◽  
pp. 81-90 ◽  
Author(s):  
Vincent Mukwaya ◽  
Weidong Yu ◽  
Rabie AM Asad ◽  
Hajo Yagoub

Cellulose nano fibrils (CNFs) were isolated from banana rachis bran using enzyme hydrolysis with subsequent ultra-sonic treatment. The CNFs and bran were characterized by particle size distribution (only the CNFs), X-ray diffraction (XRD), Thermogravimetric analysis (TGA) and Fourier-transform infrared spectroscopy; the morphology of the banana rachis fiber and CNFs was observed using scanning electron microscopy and transmission electron microscopy, respectively. The furnished nano fibrils had an average diameter of 14.02 ± 2.10 nm and length of 619.6 ± 90.7 nm. The aspect ratio of the CNFs is in the range of long fibrils, that is 44.18. XRD studies revealed that CNFs (48.83%) were more crystalline than the banana bran (27.76%). TGA and derivative thermogravimetry thermograms showed that CNFs were more thermally stable than the bran.


2011 ◽  
Vol 236-238 ◽  
pp. 2000-2003
Author(s):  
Yong Cai Zhang ◽  
En Ren Zhang

Ultrafine CeO2 nanoparticles were synthesized directly via solvothermal treatment of Ce(NO3)3·6H2O powder in toluene at 180 °C for 48 h, and characterized by X-ray diffraction (XRD), Raman, X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM), and UV-vis absorption spectrum. The results from XRD, Raman and XPS revealed the formation of pure cubic phase CeO2 with some oxygen vacancies. The TEM image disclosed that the as-synthesized CeO2 comprised nanoparticles of about 5–8 nm. The UV-vis absorption spectrum showed that the as-synthesized CeO2 nanoparticles had a wide UV absorption band centered at around 326 nm (3.8 eV).


2011 ◽  
Vol 399-401 ◽  
pp. 1020-1025
Author(s):  
Jin Sheng Liao ◽  
Hang Ying You ◽  
Qing Xia Wu ◽  
He Rui Wen ◽  
Jing Lin Chen ◽  
...  

Monoclinic La2(WO4)3 nanophosphors codoped with Tm3+ and Yb3+ ions were synthesized via hydrothermal process followed by heat treatment. Powder X-ray diffraction (XRD) and scanning electron microscopy (SEM) were used to characterize as-prepared samples. The dependences of Yb3+/ concentration and laser pumping power on the upconversion emissions were extensively investigated. The results show that upconversion luminescence increases with the Yb3+/ concentration and gets its peak at 30 %. The upconversion mechanism and process in the Yb3+/Tm3+ codoped La2(WO4)3 phosphors were analysed.


2007 ◽  
Vol 280-283 ◽  
pp. 521-524
Author(s):  
Li Qiong An ◽  
Jian Zhang ◽  
Min Liu ◽  
Sheng Wu Wang

Yb3+ and Ho3+ co-doped Lu2O3 nanocrystalline powders were synthesized by a reversestrike co-precipitation method. The as-prepared powders were examined by the X-ray diffraction and transmission electron microscopy. The phase composition of the powders was cubic and the particle size was in the range of 30~50 nm. Emission and excitation spectra of the powders were measured by a spectrofluorometer and the possible upconversion luminescence mechanism was also discussed.


RSC Advances ◽  
2015 ◽  
Vol 5 (54) ◽  
pp. 43473-43479 ◽  
Author(s):  
Yanli Xu ◽  
Mengmeng Lv ◽  
Hanbiao Yang ◽  
Qi Chen ◽  
Xueting Liu ◽  
...  

The BiVO4/MIL-101 composite and pure materials were characterized by X-ray diffraction, transmission electron microscopy, thermogravimetric analysis, UV-vis diffuse reflectance absorption spectra and photoluminescence emission spectra.


2014 ◽  
Vol 2014 ◽  
pp. 1-9 ◽  
Author(s):  
Katayoon Kalantari ◽  
Mansor B. Ahmad ◽  
Kamyar Shameli ◽  
Mohd Zobir Bin Hussein ◽  
Roshanak Khandanlou ◽  
...  

Iron oxide nanoparticles (Fe3O4-NPs) were synthesized using chemical coprecipitation method. Fe3O4-NPs are located in interlamellar space and external surfaces of montmorillonite (MMT) as a solid supported at room temperature. The size of magnetite nanoparticles could be controlled by varying the amount of NaOH as reducing agent in the medium. The interlamellar space changed from 1.24 nm to 2.85 nm and average diameter of Fe3O4nanoparticles was from 12.88 nm to 8.24 nm. The synthesized nanoparticles were characterized using some instruments such as transmission electron microscopy, powder X-ray diffraction, energy dispersive X-ray spectroscopy, field emission scanning electron microscopy, vibrating sample magnetometer, and Fourier transform infrared spectroscopy.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
J. K. Shashikumara ◽  
Bhimanagouda Kalaburgi ◽  
B. E. Kumara Swamy ◽  
H. Nagabhushana ◽  
S. C. Sharma ◽  
...  

AbstractThe RGO-Y2O3 and RGO-Y2O3: Cr3+ (5 mol %) nanocomposite (NC) synthesized by hydrothermal technique. The structure and morphology of the synthesized NCs were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). Y2O3:Cr3+ displays spherical-shaped particles. Conversely, the surface of the RGO displays a wrinkly texture connecting with the existence of flexible and ultrathin graphene sheets. The photoluminescence (PL) emission spectra showed series of sharp peaks at 490, 591, and 687 nm which corresponding to 4F9/2 → 6H15/2, 4F9/2 → 6H13/2, and 4F9/2 → 6H11/2 transitions and lies in the blue, orange, and red region. The prepared NCs were used for the preparation of modified carbon paste electrodes (MCPE) in the electrochemical detection of dopamine (DA) at pH 7.4. Both modified electrodes provide a good current response towards voltammetric detection of DA. Doping is an effective method to improve the conductivity of Y2O3:Cr3+ and developed a method for the sensor used in analytical applications.


2021 ◽  
Author(s):  
J Shashikumar ◽  
Bheenama Patil ◽  
B E KUMARA SWAMY ◽  
H Nagabhushana ◽  
S Sharma ◽  
...  

Abstract The RGO-Y2O3 and RGO-Y2O3: Cr3+ (5 mol %) nanocomposite (NC) synthesized a simple hydrothermal technique. The structure and morphology of the synthesized NCs were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). Y2O3:Cr3+ display spherical shaped particles. Conversely, the surface of the RGO displays a wrinkly texture connecting with the existence of flexible and ultrathin graphene sheets. The photoluminescence (PL) emission spectra showed series of sharp peaks at 490, 591, and 687 nm which corresponding to 4F9/2→6H15/2, 4F9/2→6H13/2, and 4F9/2→6H11/2 transitions and lies in the blue, orange, and red region. The prepared NCs were used for the preparation of modified carbon paste electrodes (MCPE) in the electrochemical detection of dopamine (DA) at pH 7.4. Both modified electrodes provide a good electrocatalytic activity for the voltametric detection of DA. Doping is an effective method to improve the conductivity of Y2O3:Cr3+ and developed a method for the sensor used in analytical applications.


Sign in / Sign up

Export Citation Format

Share Document