scholarly journals Comparison of Satellite and Ground-Based Phenology in China’s Temperate Monsoon Area

2014 ◽  
Vol 2014 ◽  
pp. 1-10 ◽  
Author(s):  
Huanjiong Wang ◽  
Junhu Dai ◽  
Quansheng Ge

Continuous satellite datasets are widely used in tracking vegetation responses to climate variability. Start of season (SOS), for example, can be derived using a number of methods from the time series of satellite reflectance data; however, various methods often produce different SOS measures which limit the application of satellite data in phenological studies. Therefore, we employed five methods to estimate SOS from the Advanced Very High Resolution Radiometer (AVHRR)/normalized difference vegetation index (NDVI) dataset. Subsequently, we compared the SOS with the ground-based first leaf date (FLD) of 12 deciduous broadleaved plant species at 12 sites of the Chinese Phenological Observation Network (CPON). The results show that the latitudinal patterns of five satellite-derived SOS measures are similar to each other but different from the pattern of ground phenology. For individual methods, the variability of SOS time series is significantly different from ground phenology except for HANTS, Polyfit, and Midpoint methods. The SOS calculated using the Midpoint method showed significant correlations with ground phenophases most frequently (in 47.1% of cases). Using the SOS derived from the Midpoint method, significantly earlier trends in SOS were detected in 50.7% of the natural vegetation area from 1982 to 2006.

Proceedings ◽  
2019 ◽  
Vol 39 (1) ◽  
pp. 3
Author(s):  
Malak Henchiri ◽  
Wilson Kalisa ◽  
Zhang Sha ◽  
Jiahua Zhang

Land use planners require a time series land resources information and changing pattern for future management. Therefore, it is essential to assess changes in land cover. This study was to quantify the spatio-temporal dynamics of land use change over North and West Africa between 1985 and 2015 using the Normalized Difference Vegetation Index (NDVI) from the Very High Resolution Radiometer (AVHRR). The total investigated area was determined by 17,328,557.16 km2. The class of Urban and Built-up, Barren or sparsely vegetated, Savannas and Deciduous Broadleaf Forests increases considerably during the last three decades. In contrast, the class of Open Shrublands, Woody Savannas and water decrease notably during the three decades. The class of croplands decreases from 1985 to 1995 and increased from 1995 to 2015. The class of grasslands recorded a first increase from 1985 to 1995, and then decreased from 1995 to 2015. The class of permanent wetlands first decrease from 1985 to 1995, then increase from 1995 to 2005, followed by a decreasing trend during the last decade. The class of evergreen broadleaf forests decreased in the first two decades, from 1985 to 2005, and increased over the last decade.


2021 ◽  
Vol 13 (9) ◽  
pp. 1618
Author(s):  
Melakeneh G. Gedefaw ◽  
Hatim M. E. Geli ◽  
Temesgen Alemayehu Abera

Rangelands provide significant socioeconomic and environmental benefits to humans. However, climate variability and anthropogenic drivers can negatively impact rangeland productivity. The main goal of this study was to investigate structural and productivity changes in rangeland ecosystems in New Mexico (NM), in the southwestern United States of America during the 1984–2015 period. This goal was achieved by applying the time series segmented residual trend analysis (TSS-RESTREND) method, using datasets of the normalized difference vegetation index (NDVI) from the Global Inventory Modeling and Mapping Studies and precipitation from Parameter elevation Regressions on Independent Slopes Model (PRISM), and developing an assessment framework. The results indicated that about 17.6% and 12.8% of NM experienced a decrease and an increase in productivity, respectively. More than half of the state (55.6%) had insignificant change productivity, 10.8% was classified as indeterminant, and 3.2% was considered as agriculture. A decrease in productivity was observed in 2.2%, 4.5%, and 1.7% of NM’s grassland, shrubland, and ever green forest land cover classes, respectively. Significant decrease in productivity was observed in the northeastern and southeastern quadrants of NM while significant increase was observed in northwestern, southwestern, and a small portion of the southeastern quadrants. The timing of detected breakpoints coincided with some of NM’s drought events as indicated by the self-calibrated Palmar Drought Severity Index as their number increased since 2000s following a similar increase in drought severity. Some breakpoints were concurrent with some fire events. The combination of these two types of disturbances can partly explain the emergence of breakpoints with degradation in productivity. Using the breakpoint assessment framework developed in this study, the observed degradation based on the TSS-RESTREND showed only 55% agreement with the Rangeland Productivity Monitoring Service (RPMS) data. There was an agreement between the TSS-RESTREND and RPMS on the occurrence of significant degradation in productivity over the grasslands and shrublands within the Arizona/NM Tablelands and in the Chihuahua Desert ecoregions, respectively. This assessment of NM’s vegetation productivity is critical to support the decision-making process for rangeland management; address challenges related to the sustainability of forage supply and livestock production; conserve the biodiversity of rangelands ecosystems; and increase their resilience. Future analysis should consider the effects of rising temperatures and drought on rangeland degradation and productivity.


2018 ◽  
Vol 7 (10) ◽  
pp. 405 ◽  
Author(s):  
Urška Kanjir ◽  
Nataša Đurić ◽  
Tatjana Veljanovski

The European Common Agricultural Policy (CAP) post-2020 timeframe reform will reshape the agriculture land use control procedures from a selected risk fields-based approach into an all-inclusive one. The reform fosters the use of Sentinel data with the objective of enabling greater transparency and comparability of CAP results in different Member States. In this paper, we investigate the analysis of a time series approach using Sentinel-2 images and the suitability of the BFAST (Breaks for Additive Season and Trend) Monitor method to detect changes that correspond to land use anomaly observations in the assessment of agricultural parcel management activities. We focus on identifying certain signs of ineligible (inconsistent) use in permanent meadows and crop fields in one growing season, and in particular those that can be associated with time-defined greenness (vegetation vigor). Depending on the requirements of the BFAST Monitor method and currently time-limited Sentinel-2 dataset for the reliable anomaly study, we introduce customized procedures to support and verify the BFAST Monitor anomaly detection results using the analysis of NDVI (Normalized Difference Vegetation Index) object-based temporal profiles and time-series standard deviation output, where geographical objects of interest are parcels of particular land use. The validation of land use candidate anomalies in view of land use ineligibilities was performed with the information on declared land annual use and field controls, as obtained in the framework of subsidy granting in Slovenia. The results confirm that the proposed combined approach proves efficient to deal with short time series and yields high accuracy rates in monitoring agricultural parcel greenness. As such it can already be introduced to help the process of agricultural land use control within certain CAP activities in the preparation and adaptation phase.


2016 ◽  
Vol 51 (7) ◽  
pp. 858-868
Author(s):  
Marcos Cicarini Hott ◽  
Luis Marcelo Tavares de Carvalho ◽  
Mauro Antonio Homem Antunes ◽  
Polyanne Aguiar dos Santos ◽  
Tássia Borges Arantes ◽  
...  

Abstract: The objective of this work was to analyze the development of grasslands in Zona da Mata, in the state of Minas Gerais, Brazil, between 2000 and 2013, using a parameter based on the growth index of the normalized difference vegetation index (NDVI) from the moderate resolution imaging spectroradiometer (Modis) data series. Based on temporal NDVI profiles, which were used as indicators of edaphoclimatic conditions, the growth index (GI) was estimated for 16-day periods throughout the spring season of 2012 to early 2013, being compared with the average GI from 2000 to 2011, used as the reference period. Currently, the grassland areas in Zona da Mata occupy approximately 1.2 million hectares. According to the used methods, 177,322 ha (14.61%) of these grassland areas have very low vegetative growth; 577,698 ha (45.96%) have low growth; 433,475 ha (35.72%) have balanced growth; 39,980 ha (3.29%) have high growth; and 5,032 ha (0.41%) have very high vegetative growth. The grasslands had predominantly low vegetative growth during the studied period, and the NDVI/Modis series is a useful source of data for regional assessments.


2015 ◽  
Vol 12 (14) ◽  
pp. 4407-4419 ◽  
Author(s):  
J. L. Olsen ◽  
S. Miehe ◽  
P. Ceccato ◽  
R. Fensholt

Abstract. Most regional scale studies of vegetation in the Sahel have been based on Earth observation (EO) imagery due to the limited number of sites providing continuous and long term in situ meteorological and vegetation measurements. From a long time series of coarse resolution normalized difference vegetation index (NDVI) data a greening of the Sahel since the 1980s has been identified. However, it is poorly understood how commonly applied remote sensing techniques reflect the influence of extensive grazing (and changes in grazing pressure) on natural rangeland vegetation. This paper analyses the time series of Moderate Resolution Imaging Spectroradiometer (MODIS) NDVI metrics by comparing it with data from the Widou Thiengoly test site in northern Senegal. Field data include grazing intensity, end of season standing biomass (ESSB) and species composition from sizeable areas suitable for comparison with moderate – coarse resolution satellite imagery. It is shown that sampling plots excluded from grazing have a different species composition characterized by a longer growth cycle as compared to plots under controlled grazing or communal grazing. Also substantially higher ESSB is observed for grazing exclosures as compared to grazed areas, substantially exceeding the amount of biomass expected to be ingested by livestock for this area. The seasonal integrated NDVI (NDVI small integral; capturing only the signal inherent to the growing season recurrent vegetation), derived using absolute thresholds to estimate start and end of growing seasons, is identified as the metric most strongly related to ESSB for all grazing regimes. However plot-pixel comparisons demonstrate how the NDVI/ESSB relationship changes due to grazing-induced variation in annual plant species composition and the NDVI values for grazed plots are only slightly lower than the values observed for the ungrazed plots. Hence, average ESSB in ungrazed plots since 2000 was 0.93 t ha−1, compared to 0.51 t ha−1 for plots subjected to controlled grazing and 0.49 t ha−1 for communally grazed plots, but the average integrated NDVI values for the same period were 1.56, 1.49, and 1.45 for ungrazed, controlled and communal, respectively, i.e. a much smaller difference. This indicates that a grazing-induced development towards less ESSB and shorter-cycled annual plants with reduced ability to turn additional water in wet years into biomass is not adequately captured by seasonal NDVI metrics.


2012 ◽  
Vol 4 (5) ◽  
pp. 897 ◽  
Author(s):  
Luana Portz ◽  
Laurindo Antonio Guasselli ◽  
Iran Carlos Stalliviere Corrêa

Neste estudo foram analisadas as variações espaciais e temporais do Índice de Vegetação por Diferença Normalizada (NDVI) na lagoa do Peixe, no litoral do Rio Grande do Sul. Para alcançar o objetivo proposto foram utilizadas imagens de satélite Landsat TM5, entre os anos de 1986 e 2009, seguindo os procedimentos de elaboração de mosaico das cenas, verificação de campo, geração das imagens de NDVI, análise de dados de precipitação acumulada, geração dos mapas finais e análise qualitativa dos resultados obtidos. Os resultados obtidos com a geração de imagens de NDVI mostraram que a análise espaço-temporal associada aos dados de precipitação fornecem informações de valiosa importância sobre a dinâmica da lagoa do Peixe. A importância  do NDVI neste estudo se destaca pelo contraste existente entre água e vegetação, realçando os diferentes níveis de água sobre os bancos vegetados presentes na borda oeste da lagoa. Estes bancos são um importante controlador da dinâmica de circulação lagunar, onde em períodos de seca ocorre a compartimentação da lagoa, enquanto que em épocas de grande precipitação e acumulação de água estes bancos ficam submersos. Palavras-chave: Landsat TM, série temporal, Parque Nacional.  Spatial and Temporal Variation of NDVI in the Peixe Lagoon, RS  ABSTRACTThis paper analyzed the spatial and temporal variation of Normalized Difference Vegetation Index (NDVI) in the Peixe lagoon. To reach the purpose,  the NDVI time-series were collected from the study area between year 1986 and 2009 derived from Landsat TM5 satellite. The adopted methodology may be subdivided into the following steps: mosaic of scenes, fild verification, generation of NDVI time-series and qualitative analysis, in addition, it was complemented with rainfall analysis.  The results obtained with the NDVI time-series associated with the rainfall analysis data provide valuable information about the environmental dynamics. The importance of NDVI in this work is given by the contrast between water and vegetation, highlighting the different levels of water over vegetated banks present on the western edge of the lagoon. These banks are an important driver circulation in the lagoon, where in periods of drought occurs the partitioning of the lagoo, while in periods of high precipitation and accumulation of water they are submerged.    Keywords: Landsat TM, time-series, National Park.


Sign in / Sign up

Export Citation Format

Share Document