scholarly journals Dynamics Analysis of a Viral Infection Model with a General Standard Incidence Rate

2014 ◽  
Vol 2014 ◽  
pp. 1-6 ◽  
Author(s):  
Yu Ji ◽  
Muxuan Zheng

The basic viral infection models, proposed by Nowak et al. and Perelson et al., respectively, have been widely used to describe viral infection such as HBV and HIV infection. However, the basic reproduction numbers of the two models are proportional to the number of total cells of the host's organ prior to the infection, which seems not to be reasonable. In this paper, we formulate an amended model with a general standard incidence rate. The basic reproduction number of the amended model is independent of total cells of the host’s organ. When the basic reproduction numberR0<1, the infection-free equilibrium is globally asymptotically stable and the virus is cleared. Moreover, ifR0>1, then the endemic equilibrium is globally asymptotically stable and the virus persists in the host.

2010 ◽  
Vol 18 (02) ◽  
pp. 325-337 ◽  
Author(s):  
YU JI ◽  
LEQUAN MIN ◽  
YONGAN YE

The basic models of within-host viral infection, proposed by Nowak and May2 and Perelson and Nelson,5 have been widely used in the studies of HBV and HIV infections. The basic reproduction numbers of the two models are proportional to the number of total cells of the host's organ prior to the infection. In this paper, we formulate an amended Perelson and Nelson's model with standard incidence. The basic reproduction number of the amended model is independent of total cells of the host's organ. If the basic reproduction number R0 < 1, then the infection-free equilibrium is globally asymptotically stable and the virus is cleared; if R0 > 1, then the virus persists in the host, and solutions approach either an endemic equilibrium or a periodic orbit. Numerical simulations of this model agree well with the clinical HBV infection data. This can provide a possible interpretation for the viral oscillation behaviors, which were observed in chronic HBV infection patients.


2020 ◽  
Vol 28 (04) ◽  
pp. 927-944
Author(s):  
HUIJUAN LIU ◽  
FEI XU ◽  
JIA-FANG ZHANG

In this work, we construct an age-structured HIV-1 infection model to investigate the interplay between [Formula: see text] cells and viruses. In our model, we assume that the variations in the death rate of productively infected [Formula: see text] cells and the production rate of virus in infected cells are all age-dependent, and the target cells follow logistic growth. We perform mathematical analysis and prove the persistence of the semi-flow of the system. We calculate the basic reproduction number and prove the local and global stability of the steady states. We show that if the basic reproduction number is less than one, the disease-free equilibrium is globally asymptotically stable, and if the basic reproduction number is greater than one, the infected steady state is locally asymptotically stable.


2015 ◽  
Vol 9 (1) ◽  
pp. 27-29
Author(s):  
Wang Zhanwei ◽  
He Xia

The stability of a mathematical model for viral infection with Beddington-DeAngelis functional response is considered in this paper. If the basic reproduction number R ≤1, by the Routh-Hurwitz criterion and Lyapunov function, the uninfected equilibrium E is globally asymptotically stable. Then, the global stability of the infected equilibrium E is obtained by the method of Lyapunov function


2012 ◽  
Vol 05 (06) ◽  
pp. 1250058 ◽  
Author(s):  
SHIFEI WANG ◽  
YICANG ZHOU

In this paper, we investigate global dynamics for an in-host HIV-1 infection model with the long-lived infected cells and four intracellular delays. Our model admits two possible equilibria, an uninfected equilibrium and infected equilibrium depending on the basic reproduction number. We derive that the global dynamics are completely determined by the values of the basic reproduction number: if the basic reproduction number is less than one, the uninfected equilibrium is globally asymptotically stable, and the virus is cleared; if the basic reproduction number is larger than one, then the infection persists, and the infected equilibrium is globally asymptotically stable.


2021 ◽  
Vol 2021 ◽  
pp. 1-21
Author(s):  
Shewafera Wondimagegnhu Teklu ◽  
Temesgen Tibebu Mekonnen

In the paper, we have considered a nonlinear compartmental mathematical model that assesses the effect of treatment on the dynamics of HIV/AIDS and pneumonia coinfection in a human population at different infection stages. Our model revealed that the disease-free equilibrium points of the HIV/AIDS and pneumonia submodels are both locally and globally asymptotically stable whenever the associated basic reproduction numbers ( R H and R P ) are less than unity. Both the submodel endemic equilibrium points are locally and globally asymptotically stable whenever the associated basic reproduction numbers ( R P and R H ) are greater than unity. The full HIV/AIDS-pneumonia coinfection model has both locally and globally asymptotically stable disease-free equilibrium points whenever the basic reproduction number of the coinfection model R H P is less than unity. Using standard values of parameters collected from different kinds of literature, we found that the numerical values of the basic reproduction numbers of the HIV/AIDS-only submodel and pneumonia-only submodel are 17 and 7, respectively, and the basic reproduction number of the HIV/AIDS-pneumonia coinfection model is max 7 , 17 = 17 . Applying sensitive analysis, we identified the most influential parameters to change the behavior of the solution of the considered coinfection dynamical system are the HIV/AIDS and pneumonia transmission rates β 1 and β 2 , respectively. The coinfection model was numerically simulated to investigate the stability of the coinfection endemic equilibrium point, the impacts of transmission rates, and treatment strategies for HIV/AIDS-only, pneumonia-only, and HIV/AIDS-pneumonia coinfected individuals. Finally, we observed that numerical simulations indicate that treatment against infection at every stage lowers the rate of infection or disease prevalence.


2016 ◽  
Vol 09 (03) ◽  
pp. 1650046 ◽  
Author(s):  
Haitao Song ◽  
Weihua Jiang ◽  
Shengqiang Liu

To investigate the effect of heterogeneity on the global dynamics of two SIR epidemic models with general nonlinear incidence rate and infection delays, we formulate a multi-group model corresponding to the heterogeneity in the host population and a multi-stage model corresponding to heterogeneous stages of infection. Under biologically motivated considerations, we establish that the global dynamics for each of the two models is determined completely by the corresponding basic reproduction number: if the basic reproduction number is less than or equal to one, then the disease-free equilibrium is globally asymptotically stable and the disease dies out in all groups or stages; if the basic reproduction number is larger than one, then the disease will persist in all groups or stages, and there is a unique endemic equilibrium which is globally asymptotically stable. Then we conclude that the heterogeneity does not change the global dynamics of the SIR model when the incidence rate is a general nonlinear function. Our results extend a class of previous results and can be applied to the other epidemiological models. The proofs of the main results use Lyapunov functional and graph-theoretic approach.


2014 ◽  
Vol 2014 ◽  
pp. 1-5
Author(s):  
Chenxi Dai ◽  
Cui Ma ◽  
Lijuan Song ◽  
Kaifa Wang

This paper investigates the dynamic behavior of a viral infection model with general contact rate between susceptible host cells and free virus particles. If the basic reproduction number of the virus is less than unity, by LaSalle’s invariance principle, the disease-free equilibrium is globally asymptotically stable. If the basic reproduction number of the virus is greater than unity, then the virus persists in the host and the endemic equilibrium is locally asymptotically stable.


Mathematics ◽  
2018 ◽  
Vol 6 (12) ◽  
pp. 328 ◽  
Author(s):  
Yanli Ma ◽  
Jia-Bao Liu ◽  
Haixia Li

In this paper, an SIQR (Susceptible, Infected, Quarantined, Recovered) epidemic model with vaccination, elimination, and quarantine hybrid strategies is proposed, and the dynamics of this model are analyzed by both theoretical and numerical means. Firstly, the basic reproduction number R 0 , which determines whether the disease is extinct or not, is derived. Secondly, by LaSalles invariance principle, it is proved that the disease-free equilibrium is globally asymptotically stable when R 0 < 1 , and the disease dies out. By Routh-Hurwitz criterion theory, we also prove that the disease-free equilibrium is unstable and the unique endemic equilibrium is locally asymptotically stable when R 0 > 1 . Thirdly, by constructing a suitable Lyapunov function, we obtain that the unique endemic equilibrium is globally asymptotically stable and the disease persists at this endemic equilibrium if it initially exists when R 0 > 1 . Finally, some numerical simulations are presented to illustrate the analysis results.


2017 ◽  
Vol 10 (05) ◽  
pp. 1750067 ◽  
Author(s):  
Ding-Yu Zou ◽  
Shi-Fei Wang ◽  
Xue-Zhi Li

In this paper, the global properties of a mathematical modeling of hepatitis C virus (HCV) with distributed time delays is studied. Lyapunov functionals are constructed to establish the global asymptotic stability of the uninfected and infected steady states. It is shown that if the basic reproduction number [Formula: see text] is less than unity, then the uninfected steady state is globally asymptotically stable. If the basic reproduction number [Formula: see text] is larger than unity, then the infected steady state is globally asymptotically stable.


2018 ◽  
Vol 2018 ◽  
pp. 1-11 ◽  
Author(s):  
Stanislas Ouaro ◽  
Ali Traoré

We study a vector-borne disease with age of vaccination. A nonlinear incidence rate including mass action and saturating incidence as special cases is considered. The global dynamics of the equilibria are investigated and we show that if the basic reproduction number is less than 1, then the disease-free equilibrium is globally asymptotically stable; that is, the disease dies out, while if the basic reproduction number is larger than 1, then the endemic equilibrium is globally asymptotically stable, which means that the disease persists in the population. Using the basic reproduction number, we derive a vaccination coverage rate that is required for disease control and elimination.


Sign in / Sign up

Export Citation Format

Share Document