scholarly journals Genes Encoding Toxin ofClostridium difficilein Children with and without Diarrhea

Scientifica ◽  
2014 ◽  
Vol 2014 ◽  
pp. 1-4 ◽  
Author(s):  
Victor R. C. Merino ◽  
Viviane Nakano ◽  
Sydney M. Finegold ◽  
Mario J. Avila-Campos

The presence of gene 16S rRNA and genes encoding toxin A (tcdA), toxin B (tcdB), and binary toxin (cdtA/cdtB) ofClostridium difficilein stool samples from children with (110) and without (150) diarrhea was determined by using a TaqMan system. Fifty-seven (21.9%) out of 260 stool samples harbored the 16S rRNA gene. The genetic profile oftcdA+/tcdB−andcdtA+/cdtB+was verified in oneC. difficile-positive diarrhea sample and oftcdA+/tcdB+in threeC. difficile-positive nondiarrhea samples. The presence oftcdA+/tcdB+in stools obtained from children without diarrhea, suggests that they were asymptomatic carriers of toxigenic strains.

Diagnostics ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 2088
Author(s):  
Malin Lager ◽  
Peter Wilhelmsson ◽  
Andreas Matussek ◽  
Per-Eric Lindgren ◽  
Anna J. Henningsson

The main tools for clinical diagnostics of Lyme neuroborreliosis (LNB) are based on serology, i.e., detection of antibodies in cerebrospinal fluid (CSF). In some cases, PCR may be used as a supplement, e.g., on CSF from patients with early LNB. Standardisation of the molecular methods and systematic evaluation of the pre-analytical handling is lacking. To increase the analytical sensitivity for detection of Borrelia bacteria in CSF by PCR targeting the 16S rRNA gene, parameters were systematically evaluated on CSF samples spiked with a known amount of cultured Borrelia bacteria. The results showed that the parameters such as centrifugation time and speed, the use of complementary DNA as a template (in combination with primers and a probe aiming at target gene 16S rRNA), and the absence of inhibitors (e.g., erythrocytes) had the highest impact on the analytical sensitivity. Based on these results, a protocol for optimised handling of CSF samples before molecular analysis was proposed. However, no clinical evaluation of the proposed protocol has been done so far, and further investigations of the diagnostic sensitivity need to be performed on well-characterised clinical samples from patients with LNB.


2011 ◽  
Vol 41 (8) ◽  
pp. 1430-1435 ◽  
Author(s):  
Rodrigo Otávio Silveira Silva ◽  
Felipe Masiero Salvarani ◽  
Eduardo Coulaud da Costa Cruz Júnior ◽  
Prhiscylla Sadanã Pires ◽  
Renata Lara Resende Santos ◽  
...  

Clostridium difficile has emerged as a major cause of neonatal colitis in piglets, displacing classic bacterial pathogens. However, there is no information regarding the distribution of this microorganism in pig farms in Brazil. In the present study, the presence of toxins A/B and of C. difficile strains in stool samples from 60 diarrheic or non-diarrheic newborn piglets (one to seven days old), from 15 different farms, was studied. The presence of toxins A/B was detected by ELISA and PCR was used to identify toxin A, toxin B and binary toxin gene in each isolated strain. C. difficile A/B toxins were detected in ten samples (16.7%). Of these, seven were from diarrheic and three were from non-diarrheic piglets. C. difficile was recovered from 12 out of 60 (20%) fecal samples. Of those, three strains were non-toxigenic (A-B-) and nine were toxigenic. Of the nine toxigenic strains, four were A+B+ strains and five were A-B+ strains. The presence of binary toxin observed in the present study was much higher (50%) than in previously reported studies. All three non-toxigenic strains were isolated from otherwise healthy piglets. The results suggest the occurrence of neonatal diarrhea by C. difficile in farms in Brazil.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Eric J. Raes ◽  
Kristen Karsh ◽  
Swan L. S. Sow ◽  
Martin Ostrowski ◽  
Mark V. Brown ◽  
...  

AbstractGlobal oceanographic monitoring initiatives originally measured abiotic essential ocean variables but are currently incorporating biological and metagenomic sampling programs. There is, however, a large knowledge gap on how to infer bacterial functions, the information sought by biogeochemists, ecologists, and modelers, from the bacterial taxonomic information (produced by bacterial marker gene surveys). Here, we provide a correlative understanding of how a bacterial marker gene (16S rRNA) can be used to infer latitudinal trends for metabolic pathways in global monitoring campaigns. From a transect spanning 7000 km in the South Pacific Ocean we infer ten metabolic pathways from 16S rRNA gene sequences and 11 corresponding metagenome samples, which relate to metabolic processes of primary productivity, temperature-regulated thermodynamic effects, coping strategies for nutrient limitation, energy metabolism, and organic matter degradation. This study demonstrates that low-cost, high-throughput bacterial marker gene data, can be used to infer shifts in the metabolic strategies at the community scale.


2014 ◽  
Vol 64 (Pt_3) ◽  
pp. 781-786 ◽  
Author(s):  
Maximo Sánchez ◽  
Martha-Helena Ramírez-Bahena ◽  
Alvaro Peix ◽  
María J. Lorite ◽  
Juan Sanjuán ◽  
...  

Strain S658T was isolated from a Lotus corniculatus nodule in a soil sample obtained in Uruguay. Phylogenetic analysis of the 16S rRNA gene and atpD gene showed that this strain clustered within the genus Phyllobacterium . The closest related species was, in both cases, Phyllobacterium trifolii PETP02T with 99.8 % sequence similarity in the 16S rRNA gene and 96.1 % in the atpD gene. The 16S rRNA gene contains an insert at the beginning of the sequence that has no similarities with other inserts present in the same gene in described rhizobial species. Ubiquinone Q-10 was the only quinone detected. Strain S658T differed from its closest relatives through its growth in diverse culture conditions and in the assimilation of several carbon sources. It was not able to reproduce nodules in Lotus corniculatus. The results of DNA–DNA hybridization, phenotypic tests and fatty acid analyses confirmed that this strain should be classified as a representative of a novel species of the genus Phyllobacterium , for which the name Phyllobacterium loti sp. nov. is proposed. The type strain is S658T( = LMG 27289T = CECT 8230T).


2011 ◽  
Vol 225 (1) ◽  
pp. 65-69 ◽  
Author(s):  
Toshinori Kawanami ◽  
Kazuhiro Yatera ◽  
Kazumasa Fukuda ◽  
Kei Yamasaki ◽  
Masamizu Kunimoto ◽  
...  

2014 ◽  
Vol 81 (1) ◽  
pp. 48-58 ◽  
Author(s):  
Brandee L. Stone ◽  
Nathan M. Russart ◽  
Robert A. Gaultney ◽  
Angela M. Floden ◽  
Jefferson A. Vaughan ◽  
...  

ABSTRACTScant attention has been paid to Lyme disease,Borrelia burgdorferi,Ixodes scapularis, or reservoirs in eastern North Dakota despite the fact that it borders high-risk counties in Minnesota. Recent reports ofB. burgdorferiandI. scapularisin North Dakota, however, prompted a more detailed examination. Spirochetes cultured from the hearts of five rodents trapped in Grand Forks County, ND, were identified asB. burgdorferi sensu latothrough sequence analyses of the 16S rRNA gene, the 16S rRNA gene-ileTintergenic spacer region,flaB,ospA,ospC, andp66. OspC typing revealed the presence of groups A, B, E, F, L, and I. Two rodents were concurrently carrying multiple OspC types. Multilocus sequence typing suggested the eastern North Dakota strains are most closely related to those found in neighboring regions of the upper Midwest and Canada. BALB/c mice were infected withB. burgdorferiisolate M3 (OspC group B) by needle inoculation or tick bite. Tibiotarsal joints and ear pinnae were culture positive, andB. burgdorferiM3 was detected by quantitative PCR (qPCR) in the tibiotarsal joints, hearts, and ear pinnae of infected mice. Uninfected larvalI. scapularisticks were able to acquireB. burgdorferiM3 from infected mice; M3 was maintained inI. scapularisduring the molt from larva to nymph; and further, M3 was transmitted from infectedI. scapularisnymphs to naive mice, as evidenced by cultures and qPCR analyses. These results demonstrate that isolate M3 is capable of disseminated infection by both artificial and natural routes of infection. This study confirms the presence of unique (nonclonal) and infectiousB. burgdorferipopulations in eastern North Dakota.


Sign in / Sign up

Export Citation Format

Share Document