scholarly journals Effects of Sewage Discharge on Trophic State and Water Quality in a Coastal Ecosystem of the Gulf of California

2014 ◽  
Vol 2014 ◽  
pp. 1-7 ◽  
Author(s):  
Héctor Hugo Vargas-González ◽  
José Alfredo Arreola-Lizárraga ◽  
Renato Arturo Mendoza-Salgado ◽  
Lía Celina Méndez-Rodríguez ◽  
Carlos Hernando Lechuga-Deveze ◽  
...  

This paper provides evidence of the effects of urban wastewater discharges on the trophic state and environmental quality of a coastal water body in a semiarid subtropical region in the Gulf of California. The concentrations of dissolved inorganic nutrients and organic matter from urban wastewater primary treatment were estimated. La Salada Cove was the receiving water body and parameters measured during an annual cycle were temperature, salinity, dissolved oxygen, nitrite, nitrate, ammonia, orthophosphate, and chlorophylla. The effects of sewage inputs were determined by using Trophic State Index (TRIX) and the Arid Zone Coastal Water Quality Index (AZCI). It was observed that urban wastewater of the city of Guaymas provided 1,237 ton Nyr−1and 811 ton Pyr−1and TRIX indicated that the receiving water body showed symptoms of eutrophication from an oligotrophic state to a mesotrophic state; AZCI also indicated that the environmental quality of the water body was poor. The effects of urban wastewater supply with insufficient treatment resulted in symptoms of eutrophication and loss of ecological functions and services of the coastal ecosystem in La Salada Cove.

2012 ◽  
Vol 518-523 ◽  
pp. 5203-5208
Author(s):  
Shi Dong Liu ◽  
Jun Gao ◽  
Dong Qian Xue

The study on tourism environment impact on coastal area has been a hot spot for coastal ecological environment research in our country. Based on grey recognition mode, this Paper analyzes the water environment quality of Shanghai Hangzhou Bay north shore coastal artificial bathing place in the spatial-temporal perspectives and researches the impacts of coastal tourism activities on water environment. The research results reveal that: (1) Coastal artificial bathing place is beneficial for protecting and improving coastal water environmental quality and different management modes on coastal artificial bathing place present different temporal features on protection of coastal water body; (2) In tourist peak season, environmental management improves the surrounding water environmental quality of artificial bathing place; (3) In the same coastal artificial bathing place, with different water body purification technologies and different influence mechanism, the tourism activities shows different levels of impact on water environment.


1989 ◽  
Vol 21 (12) ◽  
pp. 1821-1824
Author(s):  
M. Suzuki ◽  
K. Chihara ◽  
M. Okada ◽  
H. Kawashima ◽  
S. Hoshino

A computer program based on expert system software was developed and proposed as a prototype model for water management to control eutrophication problems in receiving water bodies (Suzuki etal., 1988). The system has several expert functions: 1. data input and estimation of pollution load generated and discharged in the river watershed; 2. estimation of pollution load run-off entering rivers; 3. estimation of water quality of receiving water bodies, such as lakes; and 4. assisting man-machine dialog operation. The program can be used with MS-DOS BASIC and assembler in a 16 bit personal computer. Five spread sheets are utilized in calculation and summation of the pollutant load, using multi-windows. Partial differential equations for an ecological model for simulation of self-purification in shallow rivers and simulation of seasonal variations of water quality in a lake were converted to computer programs and included in the expert system. The simulated results of water quality are shown on the monitor graphically. In this study, the expert system thus developed was used to estimate the present state of one typical polluted river basin. The river was the Katsura, which flows into Lake Sagami, a lake dammed for water supply. Data which had been actually measured were compared with the simulated water quality data, and good agreement was found. This type of expert system is expected to be useful for water management of a closed water body.


2014 ◽  
Vol 12 (2) ◽  
pp. 103-109 ◽  
Author(s):  
Yilei Yu ◽  
Xianfang Song ◽  
Yinghua Zhang ◽  
Fandong Zheng ◽  
Licai Liu

2002 ◽  
Vol 45 (3) ◽  
pp. 11-24 ◽  
Author(s):  
T. Hvitved-Jacobsen ◽  
J. Vollertsen ◽  
J.S. Matos

The sewer is a reactor for chemical and microbial transformations of wastewater. These in-sewer processes affect the quality of the wastewater and thereby the sewer itself, the subsequent treatment and the receiving water quality. The paper focuses on the interactions between the dry weather in-sewer chemical and microbial transformations of the wastewater and the corresponding processes in a downstream located treatment plant. A conceptual understanding of the sewer processes is crucial in this respect.


Author(s):  
Woodruff Miller

This study is the continuation of an evaluation of the trophic state of lakes located in Grand Teton National Park, Wyoming. The original 1995 study was motivated by concern that the water quality of the lakes within the Park may be declining due to increased human usage over the past several years. A trophic state evaluation, featuring nutrient and chlorophyll-a analyses, was chosen because it is believed to be a sound indicator of the lakes' overall water quality. In this 1996 study, a thorough evaluation was made of Jackson Lake. This summary is taken from the complete 100 page report which is available from Woodruff Miller at Brigham Young University or Hank Harlow at the University of Wyoming. In most cases water samples were taken four times during the summer of 1996, in June, July, August, and October. Jackson Lake was sampled at eight different locations on thesurface and at depths near the bottom. The lake inlet and outlet were also sampled four times. Jackson Lake was sampled from a motor boat which also provided a means to measure the lake transparency and depth. The chlorophyll-a and nutrient concentrations were analyzed by the Utah State Health Department, Division of Laboratory Services. Jackson Lake was evaluated using the models of Carlson, Vollenweider, and Larsen­Mercier. The nature of the Larsen-Mercier and Vollenweider models, based on system inflow and outflow data, is such that they yield one trophic state assessment of the lake per inflow and outflow sample set. The Carlson Trophic State Indices (TSI), on the other hand, are based on in situ properties of the water at any point in the lake. Consequently, while there are four Vollenweider and four Larsen-Mercier evaluations for Jackson Lake, individual Carlson evaluations were made for the eight sample sites around the lake at the surface and at depth, and an evaluation for the lake as a whole was constructed using averages taken from the site evaluations. This allowed us to examine the relative water quality of different portions of the lake at different time periods.


Author(s):  
M. D. Bolt

Water quality sampling in Florida is acknowledged to be spatially and temporally variable. The rotational monitoring program that was created to capture data within the state’s thousands of miles of coastline and streams, and millions of acres of lakes, reservoirs, and ponds may be partly responsible for inducing the variability as an artifact. Florida’s new dissolved-oxygen-standard methodology will require more data to calculate a percent saturation. This additional data requirement’s impact can be seen when the new methodology is applied retrospectively to the historical collection. To understand how, where, and when the methodological change could alter the environmental quality narrative of state waters requires addressing induced bias from prior sampling events and behaviors. Here stream and coastal water quality data is explored through several modalities to maximize understanding and communication of the spatiotemporal relationships. Previous methodology and expected-retrospective calculations outside the regulatory framework are found to be significantly different, but dependent on the spatiotemporal perspective. Data visualization is leveraged to demonstrate these differences, their potential impacts on environmental narratives, and to direct further review and analysis.


Water ◽  
2020 ◽  
Vol 12 (11) ◽  
pp. 3065
Author(s):  
Gabriela Elena Dumitran ◽  
Liana Ioana Vuta ◽  
Bogdan Popa ◽  
Florica Popa

Climate change represents one of the major challenges of our century with great potential to alter water quality, and hence, find suitable solutions becomes a must. Stanca–Costesti reservoir is one of the most important in Romania and one of the most affected by the hydrologic variability. The studies regarding the trophic state of this reservoir are few, even if there are some environmental issues in its hydrological basin that could be further investigated. According to the National Administration “Apele Romane” (ANAR) yearly reports, the Stanca–Costesti reservoir is, from the trophic state point of view, an oligotrophic lake. The current research is based on chemical and some biological data collected over 10 years (ANAR) for the trophic state of the Stanca–Costesti reservoir, using the Carlson index. The research investigates the hydrological data and spans over 10 years that were classified into three categories, namely: wet year, normal year, and dry year and the influences generated by the contrasting weather (flow and temperature changes) on the trophic state of the lake. The research findings show that the trophic state of the lake is directly influenced by the hydrological variability, namely evolving to a hypertrophic status due to concentrations of nutrients. Moreover, over the years, according to ANAR data, the water quality in the reservoir alternated. Hence, at times, the quality of the water was poor, with possible negative influences on water usage. As a consequence, we proposed that the water quality be verified monthly, and this should be done by means of a more reliable method, such as a multiparameter index or multicriteria analysis.


Author(s):  
Di Zhou ◽  
Miao Yu ◽  
Junbao Yu ◽  
Yunzhao Li ◽  
Bo Guan ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document