scholarly journals Effect of PVA-co-MMA Copolymer on the Physical, Mechanical, and Thermal Properties of Tropical Wood Materials

2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
Md. Saiful Islam ◽  
Sinin Hamdan ◽  
Mansor B. Ahmad ◽  
Mahbub Hasan ◽  
Azman Hassan ◽  
...  

The present study demonstrates the effect of copolymer on the physical, mechanical, and thermal properties of tropical wood and wood polymer composites (WPCs). Mixed monomers of methyl methacrylate (MMA) and polyvinyl alcohol (PVA) were effectively impregnated into the cellular structure of several types of tropical wood, which then underwent a catalyst-thermal process to polymerize and form WPC. The manufacturing of WPC was confirmed through Fourier transform infrared (FTIR) spectroscopy and scanning electron microscopic (SEM) analysis. The SEM observation showed that polymer converted from monomers filled up wood cell cavities and tightly interacted with wood matrix. The X-ray diffraction results reveal that the degree of crystallinity was significantly improved upon impregnation with PVA-co-MMA copolymer. The modulus of elasticity (MOE) and compressive modulus were found to be significantly higher after treatment with MMA/PVA indicating improvement of mechanical properties of the wood samples. In addition, the modified WPC had lower water absorption compared to their corresponding raw samples. It is interesting to note that thermogravimetric (TGA) analysis shows an extensive improvement in thermal properties of WPC.

2011 ◽  
Vol 13 (3) ◽  
pp. 61-65 ◽  
Author(s):  
Agnieszka Szczygielska ◽  
Jacek Kijeński

Studies of properties of polypropylene/halloysite compositesThe results of the studies on the synthesis, mechanical and thermal properties of polypropylene composites with various amount of halloysite filler are presented. Halloysite (HNT) belongs to the silica type characterized by a two-layer 1:1 structure. This work was aimed to develop a method for the modification of halloysite in its prime use as a filler for polypropylene by extrusion. The composites contain 1, 3, 5 and 7 wt.% of HNT. The degree of crystallinity of the composites decrease with increasing halloysite content. The results confirm the expectations that composites of interesting physicochemical, mechanical and thermal properties can be obtained. The mechanical properties studied show that the filler modification method used leads to the synthesis of polymer composites of improved thermal and mechanical properties.


1991 ◽  
Vol 43 (11) ◽  
pp. 2057-2065 ◽  
Author(s):  
M. G. S. Yap ◽  
Y. T. Que ◽  
L. H. L. Chia ◽  
H. S. O. Chan

2012 ◽  
Vol 463-464 ◽  
pp. 565-569 ◽  
Author(s):  
Hassan Ziaei Tabari ◽  
Fateme Rafiee ◽  
Habibolah Khademi-Eslam ◽  
Mohammad Pourbakhsh

Most applications expose the materials to wide range of temperatures, which may influence on thermal behavior of materials. Thermal degradation of wood polymer composites (WPCs) is a crucial aspect for application and manufacturing process of these products. In this research, wood polymer composites with different nanoclay contents were prepared by melts compounding method. The amount of wood flour and coupling agent were fixed at 40% and 10% wt% (total weight), respectively, and the different levels of nanoclay include 0, 3 and 5% wt% were used in preparing the composites. Thermal properties of nanocomposites were characterized by Differential Scanning Calorimeter (DSC) and thermal gravimetric analysis (TGA). The DSC analyses show that the crystallization temperature (Tc), enthalpy ΔHm, and the degree of crystallinity (Xc) of the nanocomposites were increased by addition of nanoclay. The TGA results indicate that by increasing the nanoclay percentage the degradation temperatures and thermal stability was enhanced.


2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
Emi Govorčin Bajsić ◽  
Vesna Rek ◽  
Ivana Ćosić

The effect of the addition of talc on the morphology and thermal properties of blends of thermoplastic polyurethane (TPU) and polypropylene (PP) was investigated. The blends of TPU and PP are incompatible because of large differences in polarities between the nonpolar crystalline PP and polar TPU and high interfacial tensions. The interaction between TPU and PP can be improved by using talc as reinforcing filler. The morphology was observed by means of scanning electron microscopy (SEM). The thermal properties of the neat polymers and unfilled and talc filled TPU/PP blends were studied by using dynamic mechanical analysis (DMA), differential scanning calorimetry (DSC), and thermogravimetric analysis (TGA). The addition of talc in TPU/PP blends improved miscibility in all investigated TPU/T/PP blends. The DSC results for talc filled TPU/PP blends show that the degree of crystallinity increased, which is due to the nucleating effect induced by talc particles. The reason for the increased storage modulus of blends with the incorporation of talc is due to the improved interface between polymers and filler. According to TGA results, the addition of talc enhanced thermal stability. The homogeneity of the talc filled TPU/PP blends is better than unfilled TPU/PP blends.


2021 ◽  
Vol 1028 ◽  
pp. 326-330
Author(s):  
Otong Nurhilal ◽  
Sahrul Hidayat ◽  
Dadan Sumiarsa ◽  
Maykel Manawan ◽  
Risdiana

The quality of the carbon material for application of electrodes in the battery is indicated by its ability to intercalate ions, atoms or molecules. Graphite is a carbon material with good intercalation capability. In this research, a carbon material in the form of activated charcoal produced from biomass of water hyacinth has been prepared, which is carbonized at various temperatures of 400, 500, and 600 °C with three different activators of ZnCl2, KOH and H3PO4. The activated charcoal will be used as a cathode composite in lithium sulfur batteries. To determine the quality of the activated charcoal, the structure properties of activated charcoal were characterized using X-ray diffraction (XRD). Several parameters that are determined from XRD data included the degree of crystallinity, and the degree of graphitization (Y). The degree of crystallinity was found in the ranges between 5.56 and 12.6%, where activated charcoal was dominated by amorphous structures. The value of the degree of graphitization was about 36%.


2018 ◽  
Vol 32 (6) ◽  
pp. 815-830 ◽  
Author(s):  
Ata Chalabi Tehran ◽  
Karim Shelesh-Nezhad ◽  
Farshid Javidi Barazandeh

This research studies the properties of poly (butylene terephthalate) (PBT)-based systems toughened with thermoplastic polyurethane (TPU; 10, 20, and 30 wt%) and reinforced with multiwalled carbon nanotubes (CNTs; 0.1, 0.2, and 0.3 wt%). Different compositions prepared via melt mixing. Morphology studies showed good compatibility between the two polymeric phases in PBT/TPU. The addition of TPU to PBT reduced crystallization rate and melt temperature, while inclusion of CNTs had nucleation effect and increased the degree of crystallinity, crystallization, and melt temperatures. The existence of TPU in PBT caused significant enhancement in notch-impact resistant. The inclusion of CNTs to PBT/TPU blend led to the substantial improvements in tensile and flexural strengths and moduli. Dynamic mechanical thermal analysis revealed that the incorporation of CNTs into PBT/TPU enhanced storage modulus and heightened glass transition temperature. The storage modulus of PBT/TPU/CNT nanocomposite containing 0.5 wt% CNT was comparable with that of pure PBT particularly at high temperatures.


2007 ◽  
Vol 29-30 ◽  
pp. 337-340 ◽  
Author(s):  
M.A. Sawpan ◽  
K.L. Pickering ◽  
Alan Fernyhough

The potential of hemp fibre as a reinforcing material for Poly(lactic acid) (PLA) was investigated. Good interaction between hemp fibre and PLA resulted in increases of 100% for Young’s modulus and 30% for tensile strength of composites containing 30 wt% fibre. Different predictive ‘rule of mixtures’ models (e.g. Parallel, Series and Hirsch) were assessed regarding the dependence of tensile properties on fibre loading. Limited agreement with models was observed. Differential scanning calorimetry (DSC) and x-ray diffraction (XRD) studies showed that hemp fibre increased the degree of crystallinity in PLA composites.


2019 ◽  
pp. 089270571987919
Author(s):  
Volodymyr Krasinskyi ◽  
Ivan Gajdos ◽  
Oleh Suberlyak ◽  
Viktoria Antoniuk ◽  
Tomasz Jachowicz

The structure and thermal characteristics of nanocomposites based on polyvinyl alcohol (PVA) and montmorillonite (MMT) intercalated with polyvinylpyrrolidone were investigated by X-ray diffraction analysis and differential scanning calorimetry. The modification of PVA with intercalated MMT reduces the degree of crystallinity of the resulting nanocomposites but significantly increases their thermal stability. Under ultrasound, the intercalated MMT was completely distributed in a PVA solution and formed a monocrystalline structure. Films based on PVA with modified MMT were cross-linked at 110°C in the presence of 5 wt% acrylic acid and 0.5 wt% Ferrous(II) sulfate as an initiator. The formed films have a homogeneous cross-linked structure.


Sign in / Sign up

Export Citation Format

Share Document