scholarly journals Improved Synthesis of Reduced Graphene Oxide-Titanium Dioxide Composite with Highly Exposed{001}Facets and Its Photoelectrochemical Response

2014 ◽  
Vol 2014 ◽  
pp. 1-9 ◽  
Author(s):  
Gregory S. H. Thien ◽  
Fatin Saiha Omar ◽  
Nur Ily Syuhada Ahmad Blya ◽  
Wee Siong Chiu ◽  
Hong Ngee Lim ◽  
...  

Crystal facet engineering has attracted worldwide attention, particularly in facet manipulation of titanium dioxide (TiO2) surface properties. An improved synthesis by solvothermal route has been employed for the formation of TiO2with highly exposed001facets decorated on reduced graphene oxide (RGO) sheets. The RGO-TiO2composite could be produced with high yield by following a stringently methodical yet simple approach. Field emission scanning electron microscope and high resolution transmission electron microscope imaging reveal that the structure consists of TiO2nanoparticles covered with TiO2nanosheets of exposed001facets on a RGO sheet. The photocurrent response of the RGO-TiO2composite was discovered to outperform that of pure TiO2, as a ~10-fold increase in photocurrent density was observed for the RGO-TiO2electrodes. This may be attributed to rapid electron transport and the delayed recombination of electron-hole pairs due to improved ionic interaction between titanium and carbon.

2021 ◽  
pp. 004051752110265
Author(s):  
Wenjun Li ◽  
Hui Zhang ◽  
Tianyu Chen ◽  
Limeng Yang ◽  
Cuihong Sheng ◽  
...  

The self-cleaning textiles coated with reduced graphene oxide-titanium dioxide (TiO2) nanocomposites have enhanced photocatalytic activities and could have great potential in practical applications. However, it is still problematic regarding how to avoid aggregation of reduced graphene oxide nanosheets in producing reduced graphene oxide-TiO2 nanocomposites. In this research article, we propose a new method to reduce the aggregation of reduced graphene oxide nanosheets in producing cotton fabrics coated with reduced graphene oxide-TiO2 nanocomposites by combining vibration-assisted ball milling and hydrothermal synthesis process. The microstructure and photocatalytic-related properties of the resultant reduced graphene oxide-TiO2 nanocomposites and their coating cotton fabrics were characterized by using a series of techniques including field emission scanning electron microscope (FESEM), atomic force microscope (AFM), X-ray diffraction spectroscopy (XRD), Raman, particle size distribution, Brunauer-Emmett-Teller,(BET), transmission electron microscope (TEM), X-ray photoelectron spectrometer (XPS), diffuse reflectance spectra (DRS), ultraviolet photoelectron spectroscope (UPS), and photoluminescence (PL). It was indicated that the aggregation of reduced graphene oxide nanosheets in reduced graphene oxide-TiO2 nanocomposites was successfully avoided via ball milling in the presence of tetrabutyl titanate. After hydrothermal treatment, the resulting reduced graphene oxide-TiO2 nanocomposites were firmly immobilized on cotton fabric. It was demonstrated in the self-cleaning experiments that the resultant self-cleaning cotton fabrics are hydrophilic and could directly decompose color contaminants such as methylene blue, Congo red, and coffee stains under simulated sunlight irradiation due to the photo-degradation reactions of the reduced graphene oxide-TiO2 nanocomposite coating. The reduced graphene oxide-TiO2 nanocomposite-modified cotton fabric also exhibited excellent performance in both robust abrasion resistance and soap-washing resistance. The fabric photocatalytic self-cleaning capability was not found to decrease significantly after being repeatedly used for five times.


Nanomaterials ◽  
2019 ◽  
Vol 9 (6) ◽  
pp. 845
Author(s):  
Qi Yu ◽  
Yiyi Wang ◽  
Ping Chen ◽  
Weicheng Nie ◽  
Hanlin Chen ◽  
...  

The efficient preparation of electromagnetic wave absorbing materials with low density and excellent electromagnetic wave absorption remains a considerable challenge. In this study, reduced graphene oxide (RGO) wrapped Fe3O4 nanoparticles (NPs) were synthesized based on one-step reaction by the reduction of graphene oxide (GO), and the generation of super-fine Fe3O4 NPs was achieved. The phase structure, chemical composition, micromorphology, and magnetism were characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscope (XPS), scanning electron microscope (SEM), transmission electron microscope (TEM), and vibrating sample magnetometer (VSM), respectively. The electromagnetic characteristics were evaluated on a vector network analyzer by the coaxial line method. The results showed that super-fine Fe3O4 NPs with an average size of 6.18 nm are densely distributed on the surface of graphenes. The RGO/Fe3O4 nanocomposites exhibited excellent microwave absorption properties with a minimum reflection loss (RL) of up to −55.71 dB at 6.78 GHz at 3.5 mm thickness and the highest effective absorption bandwidth with RL values exceeding −10 dB is 4.76 GHz between 13.24 and 18 GHz at 1.7 mm thickness. This work provides a concise method for the development of RGO supported super dense Fe3O4 nanocomposites for high performance electromagnetic absorption applications.


Sign in / Sign up

Export Citation Format

Share Document