scholarly journals Drug Release Kinetics and Front Movement in Matrix Tablets Containing Diltiazem or Metoprolol/λ-Carrageenan Complexes

2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
Ruggero Bettini ◽  
Maria Cristina Bonferoni ◽  
Paolo Colombo ◽  
Laura Zanelotti ◽  
Carla Caramella

In this work we investigated the moving boundaries and the associated drug release kinetics in matrix tablets prepared with two complexes betweenλ-carrageenan and two soluble model drugs, namely, diltiazem HCl and metoprolol tartrate aiming at clarifying the role played by drug/polymer interaction on the water uptake, swelling, drug dissolution, and drug release performance of the matrix. The two studied complexes released the drug with different mechanism indicating two different drug/polymer interaction strengths. The comparison between the drug release behaviour of the complexes and the relevant physical mixtures indicates that diltiazem gave rise to a less soluble and more stable complex with carrageenan than metoprolol. The less stable metoprolol complex afforded an erodible matrix, whereas the stronger interaction between diltiazem and carrageenan resulted in a poorly soluble, slowly dissolving matrix. It was concluded that the different stability of the studied complexes affords two distinct drug delivery systems: in the case of MTP, the dissociation of the complex, as a consequence of the interaction with water, affords a classical soluble matrix type delivery system; in the case of DTZ, the dissolving/diffusing species is the complex itself because of the very strong interaction between the drug and the polymer.

2015 ◽  
Vol 14 (1) ◽  
pp. 91-101
Author(s):  
Nazia Tajrin ◽  
Md Elias Al Mamun ◽  
Md Habibur Rahman ◽  
Md Selim Reza

The study was performed to investigate the effect of channeling agent on the release profile of Stavudine from Methocel K100 LVCR and Ethocel 20 cps based matrix systems. Stavudine, a nucleoside analog drug, is used in the treatment of acquired immune deficiency syndrome (AIDS). Stavudine matrix tablet was prepared using Methocel K100 LVCR and Ethocel 20 cps as polymer and also using PEG 3350 and PEG 6000 as channeling agents. The drug release mechanisms from different matrix tablets were explored and explained by zero order, first order, Higuchi, Korsmeyer and Hixson-Crowell equations. The release rate, extent and mechanisms were found to be governed by polymer type used and the content of the channeling agent. It was found that the release of drug from the matrix tablet was increased with the increasing concentration of channeling agent. However, PEG 6000 enhanced the release of drug greater than PEG 3350 from the matrix. On the other hand, Stavudine matrix containing Ethocel 20 cps showed a strong tendency to retard the drug release to 51-56% after 8 hours of dissolution, whereas the release was found to be increased for the Methocel containing matrix to 90-100%. Kinetic modeling of dissolution profiles revealed drug release mechanism ranged from diffusion controlled or Fickian transport to anomalous type or non- Fickian transport, which was mainly dependent on the presence of relative amount of channeling agent and type of polymer. These studies indicate that the proper balance between a matrix forming agent and a channeling agent can produce optimum drug dissolution kinetics from Stavudine matrix tablet. The mechanism was also revealed by Scanning Electron Microscope (SEM) pictures taken at various intervals of dissolution which showed that the extent of pore formation in the matrix increases with the increasing amount of channeling agent and also the hydrophilic nature of the polymer used in the formulation.Dhaka Univ. J. Pharm. Sci. 14(1): 91-101, 2015 (June)


Author(s):  
Audinarayana N ◽  
Anala Srinivasulu ◽  
Vellore Sruthikumari ◽  
Likitha ◽  
Ananda Deepak V

The principle in this present research is to formulate Mesalamine containing colon targeted tablets by using different polymers and evaluate the effect of different polymers in drug release pattern. The matrix tablets of Mesalamine are formulated by polysaccharides based polymers like Cellulose acetate phthalate (CAP), Ethyl cellulose (EC), Guar gum (GG) and Xanthan gum (XG) which protects the drug to release in Stomach and Small Intestine. The invitro drug dissolution investigation of F2 (GG and XG) Matrix tablet was controlled by swelling into a viscous gel in colonic pH, which have been accomplished as the best tablet. The optimized tablet F2 was found to be stable in stability study (short term) with reproducible evaluation data, which also shows the highest swelling index, increased viscosity in colonic pH. The drug release pattern from the F2 formulation follows swelling and erosion behavior. From the data it show that F2 tablets suitable for providing colon targeted drug delivery.


1970 ◽  
Vol 8 (1) ◽  
pp. 31-38 ◽  
Author(s):  
Mohammad Nezab Uddin ◽  
Ishtiaq Ahmed ◽  
Monzurul Amin Roni ◽  
Muhammad Rashedul Islam ◽  
Mohammad Habibur Rahman ◽  
...  

The objective of this study was to design oral sustained release matrix tablets of Ranolazine usinghydroxypropyl methylcellulose (HPMC) as the retardant polymer and to study the effect of formulation factors suchas polymer proportion and polymer viscosity on the release of drug. In vitro release studies were performed usingUSP type II apparatus (paddle method) in 900 mL of 0.1N HCl at 100 rpm for 12 hours. The release kinetics wasanalyzed using the zero-order, first order, Higuchi and Korsmeyer-Peppas equations to explore and explain themechanism of drug release from the matrix tablets. In vitro release studies revealed that the release rate decreasedwith increase in polymer proportion and viscosity grade. Mathematical analysis of the release kinetics indicated thatthe nature of drug release from the matrix tablets was dependent on drug diffusion and polymer relaxation andtherefore followed non-Fickian or anomalous release. The developed controlled release matrix tablets of Ranolazineprepared with high viscosity HPMC extended release up to 12 hours.Key words: Ranolazine; Sustained release; Methocel E50 Premium LV; Methocel K100LV CR; Methocel K4M CR;Methocel K15M CR.DOI: 10.3329/dujps.v8i1.5333Dhaka Univ. J. Pharm. Sci. 8(1): 31-38, 2009 (June)


Pharmacia ◽  
2021 ◽  
Vol 68 (1) ◽  
pp. 275-282
Author(s):  
Eka Indra Setyawan ◽  
Abdul Rohman ◽  
Erna Prawita Setyowati ◽  
Akhmad Kharis Nugroho

Aim: This study was aimed to formulate a transdermal matrix patch using green tea leaf extract. Materials and methods: The transdermal matrix patch formulation was optimized by the simplex lattice design method. The correlation between responses was analyzed using chemometrics. The observed responses were: 1. the physical properties of the matrix patch, and 2. the percentage of dissolution efficiency of catechins, caffeine, and epigallocatechin gallate released from the patch. The determination of drug release kinetics was based on the curve-fitting analysis using zero-order, first-order, Higuchi, and Korsmeyer-Peppas models. Results: The results showed that the optimal formula was obtained using the mixture of HPMC K100, HPMC K4M, and PEG 400 at a ratio of 4.0: 4.5: 0.5. The principal component analysis (PCA) showed that %DE300 values of catechin caffeine and epigallocatechin gallate positively correlate. A similar condition was observed between the weight and thickness of the matrix. Drug release kinetics follows the Korsmeyer-Peppas model.


Author(s):  
AHMED M AGIBA ◽  
WAGEEH ABDEL HAKEEM ◽  
ASHRAF G ZAYED

Objective: Ranolazine (RZ), antianginal drug indicated for the treatment of chronic stable angina pectoris, was formulated into sustained-release matrix tablets and optimized to improve patient compliance and achieve controlled release over a certain period. Methods: Different formulations were prepared by wet- and melt-granulation techniques. Excipients at different ratios as Eudragit® L100-55, Methocel™ E5, Avicel® PH-101, and carnauba wax powder were used to develop a ternary polymeric matrix system for the controlled delivery of RZ. The prepared formulations were subjected to granulometric and characteristic studies. Comparative dissolution and release kinetic studies of the selected formulation and the reference product, Ranexa® extended-release film-coated tablets, Gilead Sciences, Inc., USA, were further carried out to ensure product similarity. Results: The optimum pH-dependent to pH-independent polymers ratio was 1:1.3 (w/w). Extragranular carnauba wax in a concentration of 32.50 mg/tablet (2.50 gm% w/w) was the key excipient in controlling drug release kinetics by forming waxy matrix granules which prevent rapid dissolution. Modulation of the microenvironmental pH using a potent alkalinizing agent was very effective for controlling drug release patterns in different dissolution media from pH 1.2–6.8. Conclusion: The release of RZ from the matrix tablets was controlled for a period of 24 h, and thereby expected to provide patient compliance with minimal side effects.


2009 ◽  
Vol 12 (2) ◽  
pp. 261-277 ◽  
Author(s):  
Boris Baeumer ◽  
◽  
Lipika Chatterjee ◽  
Peter Hinow ◽  
Thomas Rades ◽  
...  

2020 ◽  
Vol 13 (3) ◽  
pp. 172-179
Author(s):  
Dharmendra Solanki ◽  
Mohit Motiwale ◽  
Sujata Mahapatra

Sustained-release (SR) matrix tablets of Acyclovir and polysaccharide isolated from corms of Colocasia esculenta, at different drug to polymer ratios, were prepared by using wet granulation method. The formulated tablets were also characterized by physical and chemical parameters and results were found in acceptable limits. The investigation focuses on the influence of the proportion of the matrix material on the mechanism and the release rate of the drug from the tablets. In vitro drug release appears to occur both by diffusion and a swelling-controlled mechanism, indicates the drug release from the tablet was non-Fickian super case II transport. The drug release data fit well to the Zero-order drug release Model and the Korsmeyer equation.


Sign in / Sign up

Export Citation Format

Share Document