scholarly journals UPLC-DAD/Q-TOF-MS Based Ingredients Identification and Vasorelaxant Effect of Ethanol Extract of Jasmine Flower

2014 ◽  
Vol 2014 ◽  
pp. 1-9 ◽  
Author(s):  
Yongqiang Yin ◽  
Xuhui Ying ◽  
Hairong Luan ◽  
Zhenying Zhao ◽  
Jianshi Lou ◽  
...  

Chinese people commonly make jasmine tea for recreation and health care. Actually, its medicinal value needs more exploration. In this study, vasorelaxant effect of ethanol extract of jasmine flower (EEJ) on isolated rat thoracic aorta rings was investigated and [Ca2+] was determined in vascular smooth muscle cells by laser scanning confocal microscope (LSCM). The result of aorta rings showed that EEJ could cause concentration-dependent relaxation of endothelium-intact rings precontracted with phenylephrine or KCl which was attenuated after preincubation of the rings with L-NAME and three different K+channel inhibitors; however, indomethacin and glibenclamide did not affect the vasodilatation of EEJ. In addition, EEJ could inhibit contraction induced by PE on endothelium-denuded rings in Ca2+-free medium as well as by accumulation of Ca2+in Ca2+-free medium with high K+. LSCM also showed that EEJ could lower the elevated level of [Ca2+] induced by KCl. These indicate that the vasodilation of EEJ is in part related to causing the release of nitric oxide, activation of K+channels, inhibition of influx of excalcium, and release of calcium from sarcoplasmic reticulum. A total of 20 main ingredients, were identified in EEJ by UPLC-DAD/Q-TOF-MS. The vasodilation activity should be attributed to the high content of flavonoid glycosides and iridoid glycosides found in EEJ.

2019 ◽  
Vol 15 (60) ◽  
pp. 59
Author(s):  
Ho-Young Choi ◽  
Bumjung Kim ◽  
Shin-Saeng Ma ◽  
Cheolmin Jo ◽  
Somin Lee ◽  
...  

2006 ◽  
Vol 1 (4) ◽  
pp. 1934578X0600100 ◽  
Author(s):  
Elena A. Santalova ◽  
Vladimir A. Denisenko ◽  
Pavel S. Dmitrenok ◽  
Dmitrii V. Berdyshev ◽  
Valentin A. Stonik

Two new 30-norlanostane-type oligoglycosides (6, 7) along with five known sarasinosides A1 (1), A2 (2), A3 (3), M (4), L (5) were isolated from the ethanol extract of the Australian sponge Melophlus sarasinorum. The skeleton of new sarasinoside A4 (6) possesses a rare 8α,9α-oxido-8,9-seco-moiety. Sarasinoside A5 (7) proved to be a 9-deoxy-congener of the previously described sarasinoside L (5). Compounds 1–7 have identical pentasaccharide chains and differ in the aglycone portions. The structures have been elucidated on the basis of NMR, MALDI-TOF MS and GC analyses.


Molecules ◽  
2018 ◽  
Vol 23 (7) ◽  
pp. 1720 ◽  
Author(s):  
Haifang Chen ◽  
Mulan Li ◽  
Chen Zhang ◽  
Wendi Du ◽  
Haihua Shao ◽  
...  

The aim of this study was to identify the chemical constituents of Loropetalum chinense (R. Brown) Oliv. (LCO) and determine which of these had antioxidant effects. The chemical composition of a 70% ethanol extract of LCO was analyzed systematically using UHPLC–Q-TOF-MS/MS. The chemical components of the 70% ethanol extract of LCO were then separated and purified using macroporous resin and chromatographic techniques. Antioxidant activity was evaluated using a DPPH assay. In total, 100 compounds were identified tentatively, including 42 gallic acid tannins, 49 flavones, and 9 phenolic compounds. Of these, 7 gallium gallate, 4 flavonoid and 8 quinic acid compounds were separated and purified from the 70% ethanol extract of LCO. The compounds identified for the first time in LCO and in the genus Loropetalum were 3,4,5-trimethoxyphenyl-(6′-O-galloyl)-O-β-d-glucopyranoside, protocatechuic acid, ethyl gallate, 5-O-caffeoylquinic acid, 3-O-caffeoylquinic acid, 3,5-O-diocaffeoylquinic acid, 4,5-O-diocaffeoylquinic acid and 3,4-O-diocaffeoylquinic acid. The 50% inhibitory concentration (IC50) values of compounds 1,2,3,4,6-penta-O-galloyl-β-d-glucose, gallic acid, protocatechuic acid, and ethyl gallate were 1.88, 1.05, 1.18, and 1.05 μg/mL, respectively. Compared with the control group (VC) (2.08 μg/mL), these compounds exhibited stronger anti-oxidation activity. This study offered considerable insight into the chemical composition of LCO, with preliminary identification of the antioxidant ingredients.


Author(s):  
Hellida Larissa Sousa‐Brito ◽  
Loeste Arruda‐Barbosa ◽  
Alfredo Augusto Vasconcelos‐Silva ◽  
Karoline Gonzaga‐Costa ◽  
Gloria Pinto Duarte ◽  
...  

Molecules ◽  
2020 ◽  
Vol 25 (20) ◽  
pp. 4762
Author(s):  
Jenny Chun-Ling Kuo ◽  
Li-Jie Zhang ◽  
Hung-Tse Huang ◽  
Chia-Ching Liaw ◽  
Zhi-Hu Lin ◽  
...  

Eleven compounds, including nine known flavonoid glycosides (1–4, 6–8, and 10–11), one isoflavone glycoside (5), and a glansreginic acid (9), were isolated from the 80% ethanol extract of commercial Astragali Complanati Semen (ACS). All chemical structures were determined by spectroscopic analyses, including 1D and 2D NMR. Compounds 2, 4, 5, 6, 9, and 10 were isolated and identified from the title plant for the first time. Biological evaluation revealed that all the isolates showed promising anti-NO production, and 1, 2, 3, and 8 were more potent in antioxidant activity than vitamin E. The major peaks in the UPLC and HPLC profiles identified their chemical structures by comparing their retention time and UV spectra with those of the reference substances. Furthermore, nine of the eleven samples collected from North, Middle, and South regions of Taiwan possessed similar HPLC fingerprints and were identified as Astragali Complanati Semen, whereas the other two samples from southern Taiwan would be the adulterants due to the different fingerprinting patterns. In addition, an HPLC-UV method was employed to determine the content of target compound complanatuside (11) with good linear regression (R2 = 0.9998) for ACS in the Taiwanese market. Of the isolates, flavonol glycosides 1 and 3 were the major peaks in HPLC/UPLC, and showed more potent antioxidant and anti-NO production activities than that of 11, revealing that these compounds can be the available agents for the quality control of ACS.


2018 ◽  
Vol 46 (01) ◽  
pp. 1-23 ◽  
Author(s):  
Rixin Guo ◽  
Ting Wang ◽  
Guohong Zhou ◽  
Mengying Xu ◽  
Xiankuo Yu ◽  
...  

Strychnos nux-vomica L. belongs to the genus Strychnos of the family Loganiaceae and grows in Sri Lanka, India and Australia. The traditional medicinal component is its seed, called Nux vomica. This study provides a relevant and comprehensive review of S. nux-vomica L., including its botany, ethnopharmacology, phytochemistry, pharmacology and toxicology, thus providing a foundation for future studies. Up to the present day, over 84 compounds, including alkaloids, iridoid glycosides, flavonoid glycosides, triterpenoids, steroids and organic acids, among others, have been isolated and identified from S. nux-vomica. These compounds possess an array of biological activities, including effects on the nervous system, analgesic and anti-inflammatory actions, antitumor effects, inhibition of the growth of pathogenic microorganisms and regulation of immune function. Furthermore, toxicity and detoxification methods are preliminarily discussed toward the end of this review. In further research on S. nux-vomica, bioactivity-guided isolation strategies should be emphasized. Its antitumor effects should be investigated further and in vivo animal experiments should be performed alongside in vitro testing. The pharmacological activity and toxicology of strychnine [Formula: see text]-oxide and brucine [Formula: see text]-oxide should be studied to explore the detoxification mechanism associated with processing more deeply.


2010 ◽  
Vol 5 (5) ◽  
pp. 1934578X1000500
Author(s):  
Wen Rui ◽  
Hongyuan Chen ◽  
Yuzhi Tan ◽  
Yanmei Zhong ◽  
Yifan Feng

A rapid method for the analysis of the main components of the total glycosides of Ranunculus japonicus (TGOR) was developed using ultra-performance liquid chromatography with quadrupole-time-of-flight mass spectrometry (UPLC/Q-TOF-MS). The separation analysis was performed on a Waters Acquity UPLC system and the accurate mass of molecules and their fragment ions were determined by Q-TOF MS. Twenty compounds, including lactone glycosides, flavonoid glycosides and flavonoid aglycones, were identified and tentatively deduced on the basis of their elemental compositions, MS/MS data and relevant literature. The results demonstrated that lactone glycosides and flavonoids were the main constituents of TGOR. Furthermore, an effective and rapid pattern was established allowing for the comprehensive and systematic characterization of the complex samples.


Molecules ◽  
2019 ◽  
Vol 24 (3) ◽  
pp. 629
Author(s):  
Jianbiao Yao ◽  
Houhong He ◽  
Jin Xue ◽  
Jianfang Wang ◽  
Huihui Jin ◽  
...  

In Traditional Chinese Medicine (TCM), Mori ramulus (Chin.Ph.)—the dried twigs of Morus alba L.—is extensively used as an antirheumatic agent and also finds additional use in asthma therapy. As a pathological high xanthine oxidase (XO, EC 1.1.3.22) activity is strongly correlated to hyperuricemy and gout, standard anti-hyperuremic therapy typically involves XO inhibitors like allopurinol, which often cause adverse effects by inhibiting other enzymes involved in purine metabolism. Mori ramulus may therefore be a promissing source for the development of new antirheumatic therapeutics with less side effects. Coumarins, one of the dominant groups of bioactive constituents of M. alba, have been demonstrated to possess anti-inflammatory, antiplatelet aggregation, antitumor, and acetylcholinesterase (AChE) inhibitory activities. The combination of HPLC (DAD) and Q-TOF technique could give excellent separating and good structural characterization abilities which make it suitable to analyze complex multi-herbal extracts in TCM. The aim of this study was to develop a HPLC (DAD)/ESI-Q-TOF-MS/MS method for the identification and profiling of pharmacologically active coumarin glycosides in Mori ramulus refined extracts for used in TCM. This HPLC (DAD)/ESI-Q-TOF-MS/MS method provided a rapid and accurate method for identification of coumarin glycosides—including new natural products described here for the first time—in the crude extract of M. alba L. In the course of this project, two novel natural products moriramulosid A (umbelliferone-6-β-d-apiofuranosyl-(1→6)-β-d-glucopyranoside) and moriramulosid B (6-[[6-O-(6-deoxy-α-l-mannopyranosyl)-β-d-glucopyranosyl]oxy]-2H-1-benzopyran-1-one) were newly discovered and the known natural product Scopolin was identified in M. alba L. for the first time.


Sign in / Sign up

Export Citation Format

Share Document