scholarly journals A MD Simulation and Analysis for Aggregation Behaviors of Nanoscale Zero-Valent Iron Particles in Water via MS

2014 ◽  
Vol 2014 ◽  
pp. 1-13 ◽  
Author(s):  
Ying Zhao ◽  
Dongmei Liu ◽  
Huan Tang ◽  
Jing Lu ◽  
Fuyi Cui

With the development of nanotechnology, more nanomaterials will enter into water environment system. Studying the existing form of nanomaterials in water environment will help people benefit from the correct use of them and to reduce the harm to human caused by them for some nanomaterials can bring polluting effect. Aggregation is a main behavior for nanoparticle in water environment. NZVI are used widely in many fields resulting in more NZVI in water environment. Molecular dynamics simulations and Materials Studio software are used to investigate the microaggregation behaviors of NZVI particles. Two scenes are involved: (1) particle size of NZVI in each simulation system is the same, but initial distance of two NZVI particles is different; (2) initial distance of two NZVI particles in each simulation system is the same, but particle size of NZVI is different. Atomistic trajectory, NP activity, total energy, and adsorption of H2O are analyzed with MS. The method provides new quantitative insight into the structure, energy, and dynamics of the aggregation behaviors of NZVI particles in water. It is necessary to understand microchange of NPs in water because it can provide theoretical research that is used to reduce polluting effect of NPs on water environment.

RSC Advances ◽  
2021 ◽  
Vol 11 (15) ◽  
pp. 8718-8729
Author(s):  
Jixue Sun ◽  
Meijiang Liu ◽  
Na Yang

The origin of SARS-CoV-2 through structural analysis of receptor recognition was investigated by molecular dynamics simulations.


2021 ◽  
Vol 22 (14) ◽  
pp. 7637
Author(s):  
Liliya T. Sahharova ◽  
Evgeniy G. Gordeev ◽  
Dmitry B. Eremin ◽  
Valentine P. Ananikov

The processes involving the capture of free radicals were explored by performing DFT molecular dynamics simulations and modeling of reaction energy profiles. We describe the idea of a radical recognition assay, where not only the presence of a radical but also the nature/reactivity of a radical may be assessed. The idea is to utilize a set of radical-sensitive molecules as tunable sensors, followed by insight into the studied radical species based on the observed reactivity/selectivity. We utilize this approach for selective recognition of common radicals—alkyl, phenyl, and iodine. By matching quantum chemical calculations with experimental data, we show that components of a system react differently with the studied radicals. Possible radical generation processes were studied involving model reactions under UV light and metal-catalyzed conditions.


2021 ◽  
Author(s):  
Dillip Kumar Mohapatra ◽  
Philip James Camp ◽  
John Philip

We probe the influence of particle size polydispersity on field-induced structures and structural transitions in magnetic fluids (ferrofluids) using phase contrast optical microscopy, light scattering and Brownian dynamics simulations. Three...


2021 ◽  
Author(s):  
Ce Hao ◽  
Yuehui Li ◽  
Yantao Shi ◽  
Xuedan Song ◽  
Zhengyan Zhao ◽  
...  

Glycolaldehyde (HOCH2CHO, GA), the simplest molecule containing both hydroxyl and aldehyde groups, is structurally the most elementary member of the monosaccharide sugars, which may provide new clues for probing the...


Soft Matter ◽  
2021 ◽  
Author(s):  
Ketan S. Khare ◽  
Cameron F Abrams

Properties of epoxy thermosets can be varied broadly to suit design requirements by altering the chemistry of the component agents. Atomistically-detailed molecular dynamics simulations are well-suited for molecular insight into...


Sign in / Sign up

Export Citation Format

Share Document